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Abstract
Whilemammographic breast density (MBD) is a well-established independent risk factor
for breast cancer and age at first full-term pregnancy (FFTP) has been identified as a
protective factor, there are very few high-quality studies that address the relationship
between these two variables. The goal of this work was to generate a systematic review
of published studies that addresses the association between age at FFTP and MBD based
on objective mammographic findings in postmenopausal women. The English-language
literature publishedwith a cutoff date 31August 2022 in the PubMed, EMBASE, Scopus,
Web of Science, and Cochrane Library databases was searched using relevant keywords.
The Newcastle-Ottawa Quality Assessment Scale was used to assess the quality of all
relevant studies identified in this search. Our search yielded 12 original publications
(including one conference abstract) that focused on the impact of age at FFTP on MBD
in studies that objectively evaluated this condition in women without any form of breast
pathology. Of these, six studies revealed a direct association between older age at
FFTP and higher MBD in postmenopausal women. The remaining six studies reported
either no relationship between these parameters or revealed an inverse association
between MBD and older age at FFTP. We concluded that half of the currently-published
findings supported an association between older age at FFTP and higherMBD. However,
substantial heterogeneity between FFTP andMBDmight be explained by different racial
clusters, lacking specific information of other reproductive factors and differences in
methodology utilized. The goal of this work was to examine whether age at FFTP is
associated with MBD in postmenopausal women.
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1. Introduction

Breast cancer (BC) has been identified as the most common
cancer in women worldwide and the second leading cause
of cancer-related mortality in the United States and Western
Europe. The incidence rate of BC is currently increasing [1, 2].
More than twomillionwomenwere diagnosedwith BC in 2020
which led to 685,000 deaths. By the end of 2020, the five-year
prevalence of BC rose to 7.8 million women. At this time, BC
became the most prevalent cancer across the globe [3, 4].
The biological and molecular mechanisms associated with

age at first full-term pregnancy (FFTP) and the contributions
of these factors to protection against BC include the activation
of genes that control chromatin remodeling [5, 6]. An FFTP
that occurs at or before 25 years of age reduces a woman’s
lifetime risk of developing BC by asmuch as 38% to 50%. This
risk is further reduced in 7% increments by each subsequent
pregnancy [1, 7–11]. By contrast, women who experience an
FFTP after the age of 30 are at an increased risk for developing

BC [1, 8, 12].

Mammographic breast density (MBD) is determined based
on the percentage of dense tissue, (i.e., adipose, epithelial,
and/or stromal tissue) detected on a mammogram of an entire
breast [2]. MBD is frequently evaluated by subjective visual
assessment [13]. The categorization system used most fre-
quently to assess MBD is the Breast Imaging Reporting and
Data System (BI-RADS) [2, 14]. BI-RADS classifies MBD
into one of four categories: (1) the breast is entirely fatty
(<25% of dense tissue); (2) scattered fibroglandular densities
can be detected within the breast (25–50% dense tissue); (3)
the breast density is heterogeneous (50–75% dense tissue); or
(4) the breast is very dense overall (>75% dense tissue) [14–
19].

Several fully-automated methods have recently been in-
troduced that provide objective assessments of MBD [20].
Automated methods that objectively assess breast density have
been utilized with increasing frequency largely due to the

https://www.ejgo.net/
http://doi.org/10.22514/ejgo.2023.016
https://www.ejgo.net/


2

introduction of digitizing film-screen mammography (FSM)
and full-field digital mammography (FFDM). Among these
methods are area-based Cumulus and volumetric techniques,
for example, VOLPARA (VolparaDataManager®, Version 1.0,
Volpara Solutions Limited, Rochester, NY, USA). New algo-
rithms introduced by computational methods such as VOL-
PARA facilitate non-subjective BI-RADS-based determina-
tions of MBD [12, 21].
Various risk factors have been established for BC.

Early menarche, increased height and weight, obesity (in
postmenopausal women), late FFTP, nulliparity, older age at
menopause, advanced age, and use of hormonal replacement
therapy (HRT) are all significant risk factors for this disease
[19, 22]. MBD was first identified as a risk factor for BC
in 1976 by Wolfe [23]. His description of the relationship
between dense breasts and a higher risk of developing BC was
confirmed in numerous subsequent studies [13, 16, 18, 19, 24–
33]. Two extensive meta-analyses concluded that increased
breast density was associated with an increased overall relative
risk of BC in all women [34, 35].
The relationship between breast density and the risk of de-

veloping BC has been attributed to nutrition, lifestyle factors,
and environmental exposures (i.e., air quality, including in-
halation of particulate materials and other pollutants) [36–38].
Results from other studies suggest that higher breast densities
may be associated with more aggressive tumors [39–41]. Of
note, MBD decreases after a woman reaches menopause. For
example, while a mean breast density of 38% was determined
for women between the ages of 40–44 years, this percentage
is reduced by 18–20% in women at 55–59 years of age [42].
Postmenopause is defined as the time after which a woman has
experienced 12 consecutive months without menstruation [43].
To date, the relationship between age at FFTP and objective
measurements of MBD after menopause has received little
attention [39, 40]. Therefore, this review aims to analyze the
association between age at FFTP and MBD in postmenopausal
women.

2. Materials and methods

2.1 Research aims
We performed a systematic review of published studies that
address the relationship between age at FFTP and MBD using
objective mammographic methods. To be included in this re-
view, at least 10% of the study population must be described as
postmenopausal. Considering the limitations of visual density
assessment, we focused on studies that provided quantitative
measures of MBD.

2.2 Search strategy
This systematic review article was undertaken in accordance
with PRISMA Guidelines [44]. Two independent research
librarians performed independent searches using the search
terms listed in Table 1 and a cutoff date 31 August 2022. Both
librarians searched the English-language literature included in
PubMed, Scopus, Web of Science, EMBASE, Scopus, and
Cochrane Library databases. The two searches resulted in
identical sets of 125 studies (Fig. 1).

2.3 Selection criteria
Studies were identified as eligible for the literature review if
they included original data focused on an association between
age at FFTP and MBD and included objective determinations
of percent and volumetric breast density in postmenopausal
women. Most of the studies included in this systematic review
included both premenopausal and postmenopausal women,
due to lack of studies in only postmenopausal women.

2.4 Quality assessment
The quality of the data and the risk of bias in each publication
were critically evaluated by two reviewers. Quality assess-
ments were performed using the Newcastle-Ottawa Quality
Assessment Scale which has been validated for observational
studies [45]. This scale includes eight items designed to
assess patient selection, study comparability, and outcomes
(for cohort and cross-sectional studies) or exposures (for cohort
studies) with a total of nine points. Scores for each outcome
were rated as follows: low quality, ≤5; medium quality, 6–7;
and high quality, 8–9.

3. Results

3.1 Search results
Our database search using the search terms listed in Table 1
yielded 125 potentially relevant references. Twenty-one dupli-
cate publications were excluded. An additional 46 studies were
excluded after a review of the abstracts. Based on the inclusion
criteria established for this systematic review, we excluded
another 46 studies because (1) they included premenopausal
women only, (2) they provided only subjective measures of
MBD, (3) they referred to age at FFTP as a risk factor but
did not examine its association with MBD in postmenopausal
women, or (4) no English-language version of the article was
available. Of note, we found no review articles that addressed
age at FFTP together with objective measurements of MBD
in postmenopausal women. After the exclusion of the afore-
mentioned publications, we identified 12 studies that could be
included in our systematic review. Additional details regarding
our search strategy are illustrated in the flowchart in Fig. 1.
The studies included in this systematic review are summarized
in Table 2.

3.2 Quality assessment
We used the Newcastle-Ottawa Quality Assessment Scale to
evaluate the quality of papers included in this review. Four of
the papers (including one abstract) received scores of 8. Six
and two papers received scores of 7 and 6, respectively. The
details of these scores are shown in Table 3.
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TABLE 1. Search terms (keywords) used to explore PubMed, Scopus, Web of Science, EMBASE, and Cochrane
Library databases. Within a column, the operator “OR” was used. Between columns, we used the operator “AND”.
Terms used to identify
studies of FFTP and
Pregnancy

Terms used to
identify studies of

age at FFTP

Terms used to identify studies
of Breast Density

Mammographic
Techniques

Terms used to
identify studies of
Breast Cancer

FFTP Maternal age Mammographic density VOLPARA Breast cancer

First pregnancy Age at first birth Mammographic breast density BI-RADS Breast neoplasms

Primigravid Age menarche Mammogram BI-RADS Breast tumor

Term birth Age menopause Dense breast volume CAD Breast tumour

Nulliparous Age first
breastfeeding

Breast/anatomy & histology FFDM

Childbearing Onset of menses Breast parenchyma Film screened

Glandular tissue

Fibroglandular tissue

BI-RADS, Breast Imaging Reporting and Data System; CAD, Computer-Aided Detection; FFDM, Full-Field Digital
Mammography; FFTP, First Full-Term Pregnancy; VOLPARA, VolparaDataManager®, USA.

FIGURE 1. Flowchart documenting the method used to identify studies that were included in this systematic review.
FFTP, first full-term pregnancy; MBD, mammographic breast density.
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TABLE 2. Overview of 12 studies included in this review that describe the relationship between age at FFTP and MBD in postmenopausal women.
Author (yr, Country) Study

design
No. of cases Age (yr) Reproductive

status
MBD measurement Study Findings

Case-Control Studies

Heusinger et al. [46]
(2011, Germany)

Case-
Control

1545
Pre-: 450 (29.1%)
Post-: 1095 (70.9%)

46.9–68.7 Pre- and Post-
menopausal

Computer-assisted
thresholding method,
“Madena” software

MBD increased with older age at FFTP
Average MBD was positively associated with age at FFTP and

inversely associated with BMI, age, and parity [42].

Sung et al. [47]
(2011, Korea)

Case-
Control

244
Pre-: 217 (88.9%)
Post-: 27 (11.1%)

29.0–73.0 Pre- and Post-
menopausal

Computer-assisted
thresholding method,
“Cumulus” software

MBD decreased with older age at FFTP
Percent breast density (area) was inversely associated with age
at FFTP and the number of children, although the associations
were only marginally significant after adjustment for BMI [43].

Yaghjyan et al. [48]
(2016, USA)

Case-
Control

4110
Pre-: 1860 (45.3%)
Post-: 2250 (54.7%)

30.0–84.0 Pre- and Post-
menopausal

Full-field digital
mammogram

(FFDM), “Cumulus”
software

MBD increased with older age at FFTP
Percent breast density was positively associated with age

at FFTP, while the number of children was inversely associated
with percent breast density [44].

Rice et al. [25]
(2018, USA)

Case-
Control

12,274
Pre-: 4297 (35.1%)
Post-: 7977 (64.9%)

40.8–70.8 Pre- and Post-
menopausal

Computer-assisted
thresholding method,

“Cumulus” and
“UCSF” software

No significant associations between age at FFTP and MBD
BMI and the number of live births among parous women were
inversely associated with the percent MD. Nulliparity, age at

menarche, prior breast biopsy, and current use of postmenopausal
HRT were positively associated with percent MD [23].

Cohort Studies

Rice et al. [49]
(2013, Mexico)

Cohort
1531

Pre-: 972 (63.5%)
Post-: 959 (36.5%)

≥35.0 Pre- and Post-
menopausal

Computer-assisted
thresholding method,
“Mamgr” software

MBD increased by early adult body fatness (i.e.,
before FFTP and ages 25–35)

A modest positive association was observed between body fatness
(adipose tissue) immediately before the FFTP and between

the ages of 25 and 35 years after adjustment for current BMI [45].

Rice et al. [37]
(2015, Mexico)

Cohort
1607

Pre-: 1007 (62.7%)
Post-: 600 (37.3%)

≥35.0 Pre- and Post-
menopausal

Computer-assisted
thresholding method,
“Mamgr” software

Age at FFTP was not significantly associated with MBD
Age at FFTP, age at menarche, and the number of

births were not associated with MBD.
Age, current BMI, BMI at age 18 years, and weight change

since age 18 years were inversely associated with
percent breast density [34].
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TABLE 2. Continued.
Author (yr, Country) Study

design
No. of cases Age (yr) Reproductive

status
MBD measurement Study Findings

Alexeeff et al. [26]
(2019, USA)

Cohort
24,840

Pre-: 4835 (19.5%)
Post-: 20,005 (80.5%)

40.0–74.0 Pre- and Post-
menopausal

FFDM and FSM,
“Cumulus” software

Older age at FFTP associated with higher MBD Older age at FFTP
was associated with higher MBD.

Women who first gave birth at age 40 years or more
were estimated to have 2.4% higher PD and 3.3 cm2

higher DA than women who first gave birth before age 20 years.
Nulliparity was associated with increased MBD.

Both PD and DA decreased as the number of children increased.
Older age at menarche was associated with higher PD [24].

Moran et al. [29]
(2019, Canada)

Cohort
156

Pre-: 97 (62.2%)
Post-: 59 (37.8%)

27.0–68.0 Pre- and Post-
menopausal

Computer-assisted
thresholding method,
“Cumulus” software

No significant association between age at FFTP and MBD
Women with two or more live births displayed higher adjusted

mean non-dense areas compared with women who had
one live birth.

No other significant associations were observed
between the reproductive and hormonal exposures [27].

Cross-Sectional Studies

Mariapun et al. [50]
(2015, Asia)

Cross-
Sectional

542
Pre-: 228 (42.1%)
Post-: 314 (57.9%)

40.0–74.0 Pre- and Post-
menopausal

Fully-automated
thresholding method,
“Cumulus” software

MBD increased with older age at FFTP
Percent density decreased with BMI, parity status,

earlier age at FFTP, multiple 12-month breastfeeding cycles,
and postmenopausal status [46].

Prebil et al. [51]
(2014, USA)

Cross-
Sectional

2440
Pre-: 940 (38.5%)
Post-: 1500 (61.5%)

≤45.0
>65.0

Pre- and Post-
menopausal

Full-field digital
mammogram
(FFDM),

“Single-energy
X-ray

absorptiometry”
(SXA) software

MBD reduced later in life among women with PIH during FFTP
PIH was associated with a decrease in MBD.

Breastfeeding was associated with an increase in MBD [47].

Hjerkind et al. [52]
(2018, Norway)

Cross-
Sectional 46,234

Pre-: 12,252 (26,5%)
Post-: 33,982 (73.5%)

49.0–71.0 Pre- and Post-
menopausal

Full-field digital
mammogram
(FFDM),

“VOLPARA”
software

MBD increased with older age at FFTP
Percent and absolute VMD increased with age at menarche, age
at FFTP, age at menopause, and increasing educational level.
Both percent and absolute VMD decreased with an increasing

number of pregnancies [48].
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TABLE 2. Continued.
Author (yr, Country) Study

design
No. of cases Age (yr) Reproductive

status
MBD measurement Study Findings

Vandeloo et al. [53]
(2021, Belgium)

Cross-
Sectional

1034
Post-: 1034 (100%) 50.0–69.0 Postmenopausal Full-field digital

mammogram
(FFDM),

“VOLPARA”
software

MBD (GLAND, VBD, and BI-RADS) is significantly
increased with older age at FFTP

MBD is significantly increased in women with an FFTP at
>25.7 years of age.

Older age at menarche was associated with increased MBD.
The use of oral contraceptives was associated with reduced

MBD at menopause [49].

BI-RADS, Breast Imaging-Reporting and Data System; BMI, Body Mass Index; DA, Dense Area; FSM, Film-Screen Mammography; FFDM, Full-Field Digital Mammography; FFTP,
First Full-TermPregnancy; GLAND,Glandular Tissue; HRT, Hormone Replacement Therapy; MBD,Mammographic Breast Density; MD,Mammographic Density; PD, Percent Density;
PIH, Pregnancy Induced Hypertension; SXA, Single-energy X-ray Absorptiometry; UCSF, University of California, San Francisco; VBD, Volumetric Breast Density; VMD, Volumetric
Mammographic Density; VOLPARA, VolparaDataManager®, USA.
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TABLE 3. Quality of the publications included in this systematic review based on results from the Newcastle-Ottawa
quality assessment scale.

Author/yr Study design Selection
(score)

Comparability
(score)

Exposure
(score)

Outcome
(score)

Total
(score)

Heusinger et al. [46] (2011) Case-Control 4 1 2 N/A 7

Sung et al. [47] (2011) Case-Control 4 1 2 N/A 7

Yaghjyan et al. [48] (2016) Case-Control 4 2 2 N/A 8

Rice et al. [25] (2018) Case-Control 3 1 2 N/A 6

Rice et al. [49] (2013) Cohort 3 1 N/A 3 7

Rice et al. [37] (2015) Cohort 3 1 N/A 3 7

Alexeeff et al. [26] (2019) Cohort 4 2 N/A 2 8

Moran et al. [29] (2019) Cohort 3 0 N/A 3 6

Mariapun et al. [50] (2015) Cross-Sectional 4 1 N/A 2 7

Prebil et al. [51] (2014) Cross-Sectional 4 1 N/A 2 7

Hjerkind et al. [52] (2018) Cross-Sectional 4 1 N/A 3 8

Vandeloo et al. [53] (2021) Cross-Sectional 4 1 N/A 3 8

The quality of each study included in this review is represented by the total points.
Aggregate scores greater than five points indicate high quality.
N/A: not applicable.

Of the 12 studies included in this systematic review, 11 eval-
uated outcomes in both premenopausal and postmenopausal
women; only one study focused on postmenopausal women
alone. Seven of the 12 studies were performed in North
America (USA, Canada and Mexico); three of the studies
were performed in Europe, and two in Asia. Regarding study
design, four were case-control, four were cohort, and four
were cross-sectional studies. Various mammographic density
measurement techniques were used. In Table 2, these studies
are grouped by study design followed by the mammographic
density measurement technique used.

3.3 Mammographic density measurement
techniques
The findings shown in Table 2 document the variety of mam-
mographic density measurements used in the studies included
in this review. Computer-assisted density methods were used
in all 12 studies evaluated [25, 26, 29, 37, 46–54]. Three of
the 12 studies used Cumulus software (Canto Software, Inc,
San Francisco, CA, USA) to evaluate full-field digital mam-
mogram (FFDM) images [26, 48, 50]; by contrast, two of the
studies used area-based approaches (i.e., semi-automated Cu-
mulus and fully-automated ImageJ-based approaches) [25, 47]
and two used fully-automated volumetric methods, including
VOLPARA [52, 53] and Single-energy X-ray absorptiometry
(SXA) Version 6.5 (CIRS Inc., Norfolk, VA, USA) [51]. SXA
is a valid alternative to VOLPARA, Cumulus, Quantra, and
ImageJ-based methods, as well as BI-RADS [51, 55]. A
computer-assisted thresholding method was used in four of the
studies [29, 37, 46, 49]. Heusinger et al. [46] evaluated their
findings using Madena X software version X (Eye Physics,

LLC, Los Alamitos, CA, USA). Mamgr® software (London
School of Hygiene and Tropical Medicine, London, United
Kingdom) was used in two studies [37, 49]. Moran et al. [29]
performed their analyses using Cumulus software (University
of Toronto, Toronto, Canada)

3.4 Relationship between age at first full
term pregnancy and mammographic breast
density

3.4.1 Positive associations: older age at FFTP
is associated with higher MBD
Heusinger et al. [46] conducted a case-control study of
1545 women in Germany, including 29.1% who were
premenopausal and 70.9% who were postmenopausal
(Table 2). In this study, 1025 of the women were BC patients
(31.5% premenopausal and 68.5% postmenopausal) and
520 were healthy controls (25.1% premenopausal and 74.9%
postmenopausal). The authors reported significantly increased
MBD in women diagnosed with BC compared to healthy
controls (38% versus 32%, p < 0.01). In both groups (BC
and controls), the average MBD was inversely associated with
age (p < 0.0001 and p < 0.001, respectively) and body mass
index (BMI) (p < 0.001 and p < 0.001, respectively). Parity
and younger age at FFTP were both associated with decreased
MBD (p < 0.01 and p = 0.04, respectively) [46].
Yaghjyan et al. [48] evaluated 4110 cancer-free women in

a nested case-control study using the Nurses’ Health Study
and Nurses’ Health Study II cohorts in the United States. In
this study group, 45.3% of the women were premenopausal
and 54.7% were postmenopausal (Table 2). Correlations of
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MBD and reproductive factors related to childbearing and
menopausal status were evaluated. The researchers concluded
that in postmenopausal parous women, older age at FFTP
was positively correlated with percent density (β = 0.03, 95%
confidence interval (CI) 0.01; 0.05) and inversely associated
with the non-dense area (β = −0.10, 95% CI −0.13; −0.06). Of
note, the positive association of the age at FFTP with percent
density and its inverse correlation with the non-dense breast
area were both limited to postmenopausal women. Also, in
this same group of parous women, having more children was
positively associated with lower percent density (β = −0.07,
95% CI −0.12; −0.02) and smaller absolute values of dense
areas (β = −0.14, 95% CI −0.21; −0.06) and non-dense areas
(β = −0.10, 95% CI −0.20; −0.01). The authors of this study
concluded that women who were younger at their FFTP and
had more children exhibited more favorable patterns of breast
density; this might explain the subsequent reduction in BC risk
[48].
Alexeeff et al. [26] compared the results of full-field digital

mammography (FFDM) with those from previous studies that
used traditional film-screen mammography (FSM). The study
cohort included 24,840 non-Hispanic white women of whom
19.5% were premenopausal and 80.5% were postmenopausal
(Table 2). The authors reported that reproductive factors,
including age at FFTP, menopausal status, parity, and age at
menarche were all statistically significantly associated with
MBD. Nulliparity was associated with increased breast den-
sity; both percent breast density (PD) and dense area (DA)
measurements decreased as the number of children increased.
Older age at first birth was associated with increased MBD;
women who first gave birth at age 40 years or more were
estimated to have 2.4% higher PD and 3.3 cm2 higher DA than
women who gave birth for the first time before 20 years of age
[26].
Mariapun et al. [50] conducted a cross-sectional study

that included 542 premenopausal and postmenopausal women.
MBD was estimated and differences across various ethnic
groupswere examined in randomly-selected Chinese (n = 205),
Malay (n = 138), and Indian (n = 199) women; 42.1% of the
women in this cohort were premenopausal and 57.9% were
postmenopausal (Table 2). The authors of this study reported
that percent breast density decreased with increasing parity (β
= −4.31; p = 0.001), younger age at FFTP (β = 0.20; p = 0.041);
BMI (β = −1.40; p < 0.001), and postmenopausal status (β =
−5.80; p < 0.001) [50].
A cross-sectional study performed by Hjerkind et al. [52]

included 46,428 women (ages 49–71 years) who participated
in “Breast Screen Norway” between 2007 and 2014 for whom
information on volumetric mammographic density (VMD) and
BC risk factors was available; 26.5% of these women were
premenopausal and 73.5% were postmenopausal (Table 2).
Means of percent and absolute VMD that were associated with
age, menopausal status, BMI, and other factors were estimated.
The results of this analysis revealed increases in the percent and
absolute VMD with older age at first birth (p < 0.0001), older
age at menarche (p < 0.0001), increasing age at menopause
(p < 0.0001), and higher educational level (p < 0.0001).
Both percent and absolute VMD decreased with an increasing
number of pregnancies (p < 0.0001) [52].

Vandeloo et al. [53] conducted a cross-sectional study in
Belgium (Table 2) that included 1034 postmenopausal women
who participated in the Flemish population-based BC screen-
ing program. The authors reported a direct correlation between
age at FFTP and MBD. Specifically, the results of their anal-
ysis revealed that a younger age at FFTP was associated with
reducedMBD at menopause. Among women who were>25.7
years of age at FFTP, each additional year was associated with
a 1.3% increase in glandular tissue (GLAND) (95% CI 0.0%;
2.5%) and a 1.5% increase in VBD (95% CI 0.2%; 2.8%).
Analysis using BI-RADS provided similar results. Specifi-
cally, the odds of moving to a higher BI-RADS classification
(e.g., from class 1 to class 2) increased by 5.4% (95%CI, 0.0%;
11.0%) for each year increase in age at FFTP greater than 25.7
years. Older age at menarche was associated with an increase
and the use of oral contraceptives in a decrease in MBD at
postmenopause [53].

3.4.2 Negative associations: older age at FFTP
is associated with lower MBD
Sung et al. [47] evaluated 122 pairs of monozygotic female
twins in a co-twin control study performed in Korea. Of
the 244 women evaluated in this study, 88.9% were pre-
menopausal and only 11.1% were postmenopausal (Table 2).
The authors found that MBD decreased with older age at FFTP
and a larger number of children and that the absolute dense area
was positively associated with the duration of breastfeeding
(BF). By contrast, age at menarche was not associated with
anymammographicmeasures. These results suggest thatMBD
may mediate (at least in part) some of the protective effects of
a greater number of childbirths against BC. However, age at
FFTP, age at menarche, and duration of BF do not alter the
risk of BC via their impact on MBD [47].

3.4.3 No association between age at FFTP and
MBD
Rice et al. [25] conducted a case-control study that included
12,274 women; 35.1% were premenopausal and 64.9%
were postmenopausal (Table 2). This study cohort included
3392 women who were BC patients of whom 32.6% were
premenopausal and 67.4% were postmenopausal, and
8882 healthy controls (35.9% premenopausal and 64.1%
postmenopausal). The authors concluded that, among
postmenopausal women, MBD mediated the positive
correlation between older age at FFTP and invasive as well
as estrogen-receptor-positive (ER+) BC (16% mediated, p
≤ 0.05). MBD partially influenced the correlations between
nulliparity, age at FFTP, and use of hormonal therapy with the
risk of BC. Taken together, these findings suggest that these
factors may influence the risk of BC via induction of changes
in breast tissue composition [25].
A Mexican Teachers’ Cohort study published by Rice et al.

[37] included 1607 Mexican women, of whom 62.7% were
premenopausal and 37.3% were postmenopausal (Table 2).
The authors collected information on any history of benign
breast disease, 12 months or more of BF, and reproductive
history. The researchers reported no significant associations
between either parity or age at FFTP and MBD [37].
Moran et al. [29] examined the relationship between re-
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productive, hormonal, and lifestyle factors and MBD among
women with a strong family history of BC who did not carry
BRCA1 or BRCA2 mutations. This cohort study included 156
women (62.2% premenopausal and 37.8% postmenopausal).
The authors reported no significant association between MBD
and age at FFTP. Importantly, they also reported that, among
parous postmenopausal women (n = 46), women who had two
or more children had higher adjusted mean non-dense areas of
143.0 cm2 and 146.4 cm2, respectively, compared to adjusted
mean non-dense areas of 95.1 cm2 among women who had one
live birth (both p = 0.04) [29].

3.4.4 Other associations between age at FFTP
and MBD
Rice et al. [49] evaluated 1531 Mexican women who par-
ticipated in the Mexican Teachers’ Cohort study, including
63.5% who were premenopausal and 36.5% who were post-
menopausal. Analysis of the latter group revealed a modest
positive association between body fatness immediately before
FFTP and between the ages 25 and 35 years after adjustment
for current BMI, with differences of 4.9 and 3.6 percentage
points in MBD, respectively, comparing the heaviest and the
leanest women (p-trend = 0.02) [49].
Finally, a cross-sectional study published by Prebil et al.

[51] enrolled 2440 parous women (38.5% premenopausal and
61.5% postmenopausal) who were diagnosed with hyperten-
sion during pregnancy. The authors identified a relationship
between pregnancy-induced hypertension (PIH) and percent
fibroglandular volume (%FGV). Using multivariate linear re-
gression, significant associations were found between %FGV
and parity (F = 6.66; p < 0.001), age at FFTP (F = 55.37;
p < 0.001), and duration of BF (F = 37.72; p < 0.001).
Interestingly the authors found that a diagnosis of PIH was
associated with a decreased %FGV later in life, most notably
in women who were over age 30 years at FFTP [51].

4. Discussion

4.1 Summary of main findings
To the best of our knowledge, this review is one of the first
to investigate associations between age at FFTP and objective
measurements of MBD in postmenopausal women. In six
of 12 studies included in this review, the authors reported a
positive association between older age at FFTP and higher
MBD [26, 46, 48, 50, 52–54]. By contrast, three of the 12
studies reported no association [25, 29, 37], and one study
identified decreases in MBD with older age at FFTP [47]. We
also identified two studies in which the relationship between
age at FFTP and MBD was affected either by early adult body
fatness [49] or pregnancy-induced hypertension (PIH) [51].
Thus, the 12 studies included in this systematic review report
contradictory conclusions regarding the relationship between
FFTP and MBD in postmenopausal women without breast
disease.

4.2 Analysis of studies
There was substantial heterogeneity between the studies in-
cluded in this review. The data collected from the original

studies revealed differences in population size, ethnicity, mam-
mographic techniques, and software utilized. Results from
these studies suggest that ethnicity may be a confounding
factor in this analysis; this issue definitely warrants further
research. Other differences among the studies include the
reporting of reproductive factors. Some of the studies collected
information on BF or age at menarche, while others did not.
Furthermore, we recognize that women who are younger at
the time of FFTP are likely to have more children and to
breastfeed compared with women who were older at FFTP and
have only one or two children. BMI clearly increases with
the number of pregnancies; this factor is also known to be
associated with lower MBD. Other important variables may
affect the association between the age of FFTP and MBD.
Further research will be needed to determine their overall
impact. In addition to the factors already discussed, objective
measurements of density introduce important variations with
respect to the conclusions that can be reached regarding the
relationship between age at FFTP andMBD in postmenopausal
women.
Computer-assisted software that can be used to determine

breast density in mammography was introduced in the 1990s.
Since that time, several computer-assisted tools have been
approved for clinical use [56]. However, the interpretation
of these images and the results of the software-based analysis
remains challenging [57, 58]. The techniques used to measure
MBD have evolved over the past 11 years from subjective
methods (i.e., visual assessments of mammograms by trained
professionals) to computer-assisted methods that use raw data
from digital mammography images to evaluate breast density
[59].
In this systematic review, we excluded studies that assessed

MBD by subjective methods [18, 38, 60–62] (Fig. 1). How-
ever, 10 of the 12 studies evaluated in this systematic re-
view did not report which categorization methods were used.
Different measurement methods for MBD were used in the
various papers. For example, several featured measurements
of absolute dense and non-dense areas or presenting findings
as percent dense areas. By contrast, Prebil et al. [51] presented
MBD as percent fibroglandular volume (%FGV) [51]. Like-
wise, Hjerkind et al. [52] used both percent and absolute VMD
to measure mammographic density [52]. Further, Caglayan
et al. [63] concluded that a longer duration of menopause
(uninterrupted, smoother gradual) and high progesterone levels
were found to cause an increase in breast density [63].
With the introduction of digital mammography, more ap-

propriate MBD measurements were developed [55]. While
digital mammography has been used successfully to diagnose
intraepithelial neoplasia, there are no studies that feature this
technique for primary BC prevention [64, 65]. Results from a
study by Vandeloo et al. [53] revealed that the three variables
contributing to MBD (GLAND, VBD, and BI-RADS) were
significantly reduced in women who become pregnant at a
younger age [53, 54]. According to the work of the Russo’s
[66, 67] the pattern of differentiation and involution of the
breast that determine MBD and therefore an increased risk of
developing BC at menopause are closely related to one another
[66, 67].
Reproductive history is consistently and reliably associated
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with the risk of developing BC [68]. Epidemiological data
worldwide have shown consistently that FFTP at a younger
age is associated with a reduction in the risk of developing
BC in postmenopausal women [69, 70]; by contrast, late preg-
nancy and nulliparity are associated with an increased risk
[8]. Several mechanisms have been postulated to explain
the phenomenon of pregnancy-induced protection [71, 72].
The most plausible explanation has been attributed to the
differentiation of the breast [66, 67] in response to the complex
hormonal milieu generated by the placenta and the fetus [73].
These developmental events inducemorphological, functional,
genomic, and transcriptomic changes that may ultimately re-
sult in a permanent and specific profile associated with reduced
cancer risk [66, 74–77]. These changes may also result in a
reduction in MBD in postmenopausal women. Interestingly,
insulin-like growth factor 1 (IGF-1) was found to be down-
regulated in the parous breast [5, 78]. This observation is
consistent with reports of lower levels of IGF-1 in parous
compared with nulliparous women [79], thereby supporting
the association of this factor with increased BC risk and also
increased MBD [79, 80]. The down-regulation of IGF-1 in
the parous breast, in association with the significant down-
regulation of other related genes, may represent a significant
driving force in the reduction of the risk of developing BC
conferred by pregnancy. Interestingly, these events might be
visualized with appropriate techniques used to measure MBD
[77, 81].
This review has several limitations. First, we identified only

a few studies that specifically addressed the role of age at FFTP
in MBD in postmenopausal women. Most published studies
included both premenopausal and postmenopausal women. In
addition, the number of cases per study varied widely. It
was also difficult to compare results from these publications
because of the substantial diversity in the racial and ethnic
composition of the study populations. Several studies were
themselves limited by poor collection of data on the partici-
pants’ reproductive histories. Additionally, we were unable
to reach a uniform conclusion because MBD results were
collected using different methodologies and software analyses.
Finally, we were unable to perform a meta-analysis because of
the significant cross-study heterogeneity.

5. Conclusions

In this review, we examined the relationship between age
at FFTP and objectively-measured MBD in postmenopausal
women. Although recent literature provides us with insight
into the biological and molecular basis of FFTP and the mech-
anisms underlying protection against BC, very few studies
have investigated whether early FFTP might be associated
with lower MBD in postmenopausal women. As part of this
systematic review, which covered 11 years of published liter-
ature, we found only six (of 12) original studies that reported
an association between older age at FFTP and higher MBD.
However, due to differences among the study conditions, no
conclusions can be drawn regarding the links between age at
FFTP, MBD, and BC risk.
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