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Abstract
Ovarian cancer is a lethal female reproductive system malignancy. However, the
physiological roles of ferroptosis in ovarian cancer remains unclear. In this study,
biological information databases were screened to characterize and examine the
differentially expressed ferroptosis-related genes between ovarian cancer and normal
ovarian tissue, and to further investigate a novel risk signature for predicting the
prognosis of ovarian cancer. Molecular and clinical data were retrieved from The Cancer
Genome Atlas (TCGA) database. Based on these data, we identified differentially
expressed ferroptosis-related genes, and construct a multigene risk signature by least
absolute shrinkage and celection operator (LASSO) Cox regression to predict the
prognosis of ovarian cancer. Univariate and multivariate Cox regression analysis
were used to verify the prognostic value of the signature. We constructed a risk
signature for ovarian cancer based on differentially expressed ferroptosis-related genes
between normal ovarian samples and ovarian cancer samples. Referring to median risk
score, patients were divided into high-risk group and low-risk group. We performed
Cox regression analysis, principal component analysis (PCA), t-distributed stochastic
neighbor embedding (t-SNE) analysis, Kaplan-Meier Survival analysis and receiver
operating characteristic (ROC) curve to verify the accuracy of the predicted value of
the risk signature. The overall survival rates in low-risk group was significantly higher
than that in high-risk group. In addition, the area under the curve (AUC) of the ROC
curve reached 0.684 at 1 year, 0.682 at 2 years and 0.661 at 3 years. Functional analysis
indicated differentially expressed ferroptosis-related genes were enriched in immune-
related cells. The ferroptosis-related genes signature could predict the prognosis of
ovarian cancer. These genes might be potential therapeutic targets.

Keywords
Ovarian cancer; Ferroptosis; Risk signature; Prognosis; Overall survival

1. Introduction

Ovarian cancer is a lethal female reproductive system malig-
nancy. Recent global epidemiological statistics showed that it
was responsible for approximately 313,959 and 207,252 new
ovarian cancer cases and related deaths in 2020, respectively
[1, 2]. Although the 5-year survival rate of early-stage ovarian
cancer may reach 90% [3, 4], most patients (~75%) are diag-
nosed with advanced-stage disease due to its indolent course.
Therefore, the overall survival rate of ovarian cancer remains
mediocre, at <30% [5]. Despite advances in cytoreductive
surgery [6, 7], targeted therapies [8] and immunotherapies
[9, 10] have significantly improved the survival rates of the
patients over the past years, those with advanced-stage disease
have lesser satisfactory responses and poor therapeutic out-
comes. Thus, there is an urgency to clarify the carcinogenesis
of ovarian cancer, discover novel targets, and develop more
beneficial therapeutic strategies to improve the outcomes of

ovarian cancer patients.
In recent years, ferroptosis, an iron-dependent cell death due

to excessive lipid peroxidation, has received extensive atten-
tion [11]. It was reported in several biological processes and
diseases. Recent findings indicate that ferroptosis potentially
triggers cancer cell death, providing a novel therapeutic target
for treatments. A previous study reported significantly greater
iron levels in ovarian cancer tissues compared to normal adja-
cent tissues [12]. Hong et al. [8] found that ferroptosis was re-
sponsible for poly (ADP-ribose) polymerase inhibitors PARPi-
mediated anti-tumor effects. Despite numerous research, the
significance of ferroptosis and related genes in ovarian cancer
remain ambiguous.
Here, we hypothesized that ferroptosis-related genes might

be potential therapeutic targets in ovarian cancer. To confirm
this hypothesis, we first identified differentially expressed
ferroptosis-related genes between ovarian normal and can-
cer tissues, based on which we constructed a multigene risk
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signature for patient stratification and prognostic estimation.
Overall, our results confirmed ferroptosis-related genes as
potential therapeutic targets in ovarian cancer.

2. Methods and materials

2.1 Resources and data retrieval
RNA sequencing data of normal (n = 88) and cancerous
(n = 427) ovarian tissues were retrieved from The Cancer
Genome Atlas (TCGA), strictly abiding by its respective
guidelines (https://www.cancer.gov/tcga). In addition,
we retrieved 60 ferroptosis-related genes based on a previous
related study [13]. DESeq2, with p < 0.05 and a log Fold
Change (logFC) ≥2, was used to identify differentially
expressed ferroptosis-related genes between ovarian normal
and cancer samples.

2.2 Identification of ferroptosis-related
genes
Differentially expressed ferroptosis-related genes were deter-
mined based on the intersection between listed differentially
expressed genes and ferroptosis-related genes. Then, the prog-
nostic significance of these genes with ovarian cancer was
evaluated. Univariate analyses identified 6 core genes signifi-
cantly related to the patients’ overall survival, their expression
patterns were assessed using the R (version 3, R Foundation for
Statistical Computing, Vienna, Austria) “heatmap” package,
and correlations among the expressions of these core genes
were analyzed using Pearson’s correlation.

2.3 Constructing a Risk Prediction signature
The R “glmnet” package and least absolute shrinkage
and selection operator (Lasso) Cox regression analyses
were used for identifying the most promising candidate
genes. Finally, 6 key genes were identified based on the
relative coefficient via multiple regression analysis. The
following formula was derived for risk score estimation:
(0.376255766843764 × ALOX12) + (0.47921287370999
× CRYAB) + (−0.690609296701056 × SLC7A11) +
(−0.897251166405754 × HSBP1) + (0.184628472638535 ×
STEAP3) + (0.511907671277879 × ACACA).
Based on the derived risk scores, the median value

of the proposed signature was determined for stratifying
ovarian cancer patients into a high- or low-risk group.
The stratification accuracy was determined using principal
component analysis (PCA). The R “tsne” package was used
for t-distributed stochastic neighbor embedding (t-SNE)
analysis, and risk score differences were illustrated using a
risk score curve. Next, the sensitivity and specificity of the
risk score were shown using an ROC curve. The Kaplan-Meier
(KM) method was implemented to plot the survival curves
of the two risk groups. The prognostic significance of the
signature was assessed using univariate and multivariate Cox
proportional hazard analyses to determine its association with
overall survival and clinicopathological factors, including age,
menopause status, stage and grade [13].

2.4 Immune infiltration levels evaluation
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were conducted to better under-
stand the biological functions and underlying pathways associ-
ated with the differentially expressed ferroptosis-related genes.
Here, pathway and gene enrichment analyses were performed
using Gene ontology (GO) and the Kyoto Encyclopedia of
Genes andGenomes (KEGG). Enrichment levels and functions
of immune cells in each ovarian cancer sample were quantified
using singlesample gene set enrichment analysis (ssGSEA) in
terms of ssGSEA scores.

2.5 Statement
This research strictly obeyed the guidelines of the TCGA
database. The study protocols followed corresponding guide-
lines and regulations.

3. Results

3.1 Identification of differentially
expressed ferroptosis-related genes
Assessment of the downloaded mRNA expression profile
showed 17,892 genes differentially expressed between
normal and cancerous ovarian tissues. Of them, 15,019
were down-regulated and 2873 were up-regulated (Fig. 1A).
Subsequently, 60 ferroptosis-related genes identified from
prior research were compared [13]. Then, 48 (46 up-regulated
and 2 down-regulated) differentially expressed ferroptosis-
related genes between normal and cancerous ovarian tissues
were selected (Fig. 1B, Table 1). Univariate Cox analysis
showed that arachidonate 12-lipoxygenase (ALOX12),
crystallin alpha-B Gene (CRYAB), solute carrier family 7
membrane 11 (SLC7A11), heat shock factor binding protein
1 (HSBP1), six-transmembrane epithelial antigen of the
prostate 3 (STEAP3) and Acetyl-CoA Carboxylase Alpha
(ACACA) were the 6 ferroptosis-related genes (core genes)
associated with the prognosis of ovarian cancer patients. The
corresponding heatmap is shown in Fig. 1C.

3.2 Kaplan-Meier Survival analysis of the 6
core genes
Kaplan-Meier survival analysis showed the 4 ferroptosis-
related genes, CRYAB, HSBP1, SLC7A11 and STEAP3, were
significantly related to ovarian cancer patients’ survival,
while ACACA and ALOX12 were not associated with patient’s
survival (Fig. 2A–2F).

3.3 Risk signature Construction Using the
TCGA Dataset
Fig. 3A illustrates the forest plot of the 6 core genes, which
shows that SLC7A11 and HSBP1 had a significant inverse cor-
relation with prognosis, while ALOX12, CRYAB, STEAP3 and
ACACAwere positively correlated with prognosis. Correlation
network analysis shows the relationship among these 6 core
genes (Fig. 3B). LASSO analyses (Fig. 3C and 3D) showed
that all 6 genes were the most promising candidate genes,
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which were included in the risk score of the signature.
Next, the ovarian cancer patients were stratified into a

high- or low-risk group using the calculated median risk score
(Fig. 4A). Kaplan-Meier analysis indicated that the high-risk
group had poorer prognoses compared with the low-risk
group (Fig. 4B), with a 1-, 2- and 3-year ROC curve value
of 0.684, 0.682 and 0.661, respectively (Fig. 4C). Further,
the high-risk group had higher early mortality risks than the
low-risk group (Fig. 4D). PCA and t-SNE analyses indicated
that the signature could divide the patients into two directions
(Fig. 4E and 4F).

3.4 Prognostic significance of the 6-gene
signature
Univariate analyses showed that age (HR: 1.370, 95% CI:
1.057–1.774, p = 0.017) and risk score (HR: 2.789, 95% CI:
2.027–3.837, p < 0.001) were significant prognostic predictor
for ovarian cancer. After controlling for other confounders, the
risk score (HR: 2.811, 95% CI: 2.035–3.883, p < 0.001) was
identified as an independent prognostic predictor for ovarian
cancer patients’ survival (Fig. 5A and 5B).

3.5 Functional analysis using GO and KEGG
GO analysis showed that the differentially expressed
ferroptosis-related genes were enriched in the extracellular
matrix, negatively regulated endopeptidase activity, and
were cofactors for transport. KEGG analysis indicated that
transcriptional misregulation in cancer was associated with
ovarian cancer (Fig. 6A and 6B).
Next, ssGSEA was applied to evaluate the immune cell

subpopulations and related pathways of the differentially
expressed ferroptosis-related genes. The results showed
significantly different immune cell subpopulations, such
as macrophages, neutrophils, T-helper cells and regulatory
T cells (TREG), between the low- and high-risk groups.
However, the tumor immune responses of the two risk groups
were not significantly different (Fig. 6C and 6D).

4. Discussion

The treatment of ovarian cancer is clinically challenging as
most patients are identified when the cancer has already pro-
gressed to an advanced stage [1, 3, 5], resulting in a poor
overall survival rate of<30% despite numerous achievements
in surgery, chemotherapy, radiotherapy, targeted therapy and
immunotherapy [5]. Thus, clarifying the pathogenesis of ovar-
ian cancer and identifying novel targets are needed to improve
its diagnosis and treatment. In this regard, increasing evidence
suggests ferroptosis is associated with anti-cancer effects [14–
18], but its impact in ovarian cancer remains unclear. In
this present study, we identified ferroptosis-related genes as-
sociated with ovarian cancer, based on which we constructed
a 6-gene risk signature, and the patients could be stratified
into a low- or high-risk group. Further analyses showed
that the signature was an independent factor for the overall
survival of ovarian cancer patients. GO and KEGG analyses
showed the differentially expressed ferroptosis-related genes
were enriched in pathways associated with immune-related

cells and transcriptional dysregulation in ovarian cancer.
In the past few decades, gynecologic and medical oncol-

ogists have constantly been working on identifying reliable
prognostic biomarkers to improve ovarian cancer treatments
and outcomes. However, changes in a single gene expression
seem to have low predictive effects as various signaling path-
ways could regulate it. Constructing a multigene-signature
prognostic model could strengthen prognostic accuracy and
provide new insights for exploring novel targets for ovarian
cancer. Our results identified 6 promising ferroptosis-related
genes (ALOX12, CRYAB, SLC7A11, HSBP1, STEAP3 and
ACACA) and were included in the risk signature. They were
previously reported to participate in physiological processes.
For instance, ACACA, SLC7A11 and STEAP3 were reported
to be involved in lipid metabolism, (anti) oxidant metabolism
and iron homeostasis, respectively [13, 19, 20]. In addition,
ALOX12 is known as a lipoxygenase participating in lipid
metabolism [21, 22]. These genes also demonstrated key roles
in tumor initiation and progression.
SLC7A11 (Solute carrier family 7 member 11), commonly

known as xCT, is involved in the Xc-system to mediate cystine
uptake. A previous study indicated that blocking SLC7A11
could strengthen ferroptosis by disrupting the redox state
of cells [23]. A recent study showed that PARPi promoted
ferroptosis in ovarian cancer cells by suppressing SLC7A11-
mediated glutathione (GSH) synthesis [8]. Bioinformatic
analyses also indicated SLC7A11 as a promising therapeutic
target in ovarian cancer [8, 22]. ALOX12 was reportedly
required for p53-mediated tumor inhibition by regulating
ferroptosis [24], but in this present study, we found that it
had no effects on the survival in our investigated cohort of
patients. In addition, ALOX12-mediated tumor inhibition was
shown to associate with SCL7A11 [24], but the underlying
mechanisms of ALOX12 in ferroptosis remain to be further
investigated. ACACA was reported to relate to poor prognoses
in various tumors [25, 26], but similar to ALOX12, it showed
no significant impact on ovarian cancer patients’ survival.
STEAP3 was shown to be closely associated with iron
homeostasis and inflammatory responses and reported to
maintain tumor growth under hypoferric conditions [27, 28].
However, its roles in ovarian cancer are yet to be clarified.
In our study, STEAP3 was differentially expressed between
ovarian normal and cancer tissues and was confirmed to be
associated with poor prognosis, similar to CRYAB and HSBP1.
Our univariate analysis results identified both ACACA and

ALOX12 as potential factors affecting the prognosis of ovar-
ian cancer patients. However, they were not independent
prognostic factors by Kaplan-Meier survival analysis, which
might be due to the small number of normal ovarian tissues or
differences between the two analytic methods. Despite this,
ACACA and ALOX12 were still used in the signature due to
their important roles in tumor initiation and progression.
There were some limitations in this present study, such

as the relatively limited number of normal ovarian samples
and lack of basic research experiments and validation using
clinical samples. Further, the underlyingmechanism viawhich
the ferroptosis-related genes affect ovarian cancer was not
investigated. Thus, further studies are required to clarify these
limitations.
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TABLE 1. Differentially expressed ferroptosis-related genes.
Genes logFC p Value Regulated
AKR1C1 −2.42580288 7.43 × 10−32 Down-Regulated
AKR1C2 −2.01519516 2.39 × 10−18 Down-Regulated
ALOX15 1.04351906 1.66 × 10−5 Up-Regulated
PTGS2 1.04475798 3.29 × 10−7 Up-Regulated
ACACA 1.12459081 1.22 × 10−24 Up-Regulated
EMC2 1.16562385 6.18 × 10−28 Up-Regulated
GCLC 1.17078069 2.76 × 10−25 Up-Regulated
NFS1 1.18425411 1.94 × 10−35 Up-Regulated
HMGCR 1.41135598 3.98 × 10−34 Up-Regulated
CRYAB 1.41814040 1.78 × 10−10 Up-Regulated
SAT1 1.46298201 3.51 × 10−22 Up-Regulated
G6PD 1.51422835 7.82 × 10−43 Up-Regulated
ALOX12 1.55350360 9.30 × 10−18 Up-Regulated
RPL8 1.61855524 1.87 × 10−27 Up-Regulated
FDFT1 1.62085750 1.72 × 10−37 Up-Regulated
ACSL4 1.66629091 1.50 × 10−38 Up-Regulated
ACSL3 1.68111945 6.44 × 10−55 Up-Regulated
CARS 1.74204665 9.55 × 10−57 Up-Regulated
PHKG2 1.78079986 1.94 × 10−65 Up-Regulated
NOX1 1.79137988 5.06 × 10−34 Up-Regulated
ABCC1 1.84005167 1.21 × 10−51 Up-Regulated
GLS2 1.87964738 2.39 × 10−33 Up-Regulated
HSBP1 1.90562392 7.12 × 10−58 Up-Regulated
SLC1A5 1.97452029 3.15 × 10−52 Up-Regulated
FADS2 2.00316247 4.29 × 10−25 Up-Regulated
CS 2.04310313 3.90 × 10−74 Up-Regulated
GOT1 2.06288473 4.09 × 10−63 Up-Regulated
NCOA4 2.19204630 7.08 × 10−77 Up-Regulated
CISD1 2.22885733 4.38 × 10−78 Up-Regulated
PGD 2.26243942 1.38 × 10−74 Up-Regulated
KEAP1 2.30249585 4.25 × 10−79 Up-Regulated
TP53 2.31382078 3.89 × 10−35 Up-Regulated
FANCD2 2.33287111 9.00 × 10−80 Up-Regulated
LPCAT3 2.48498651 6.48 × 10−75 Up-Regulated
GPX4 2.48603437 1.88 × 10−72 Up-Regulated
GSS 2.49657866 5.98 × 10−99 Up-Regulated
STEAP3 2.54364510 1.60 × 10−50 Up-Regulated
CD44 2.60156542 6.14 × 10−52 Up-Regulated
FTH1 2.63853773 7.97 × 10−57 Up-Regulated
GCLM 2.82223740 2.96 × 10−98 Up-Regulated
ATP5MC3 2.88049019 1.71 × 10−92 Up-Regulated
SQLE 2.89059744 2.25 × 10−78 Up-Regulated
HSPB1 3.08281700 2.47 × 10−66 Up-Regulated
ALOX5 3.37107141 4.08 × 10−62 Up-Regulated
SLC7A11 3.93761461 9.31 × 10−70 Up-Regulated
NQO1 4.15476949 3.77 × 10−88 Up-Regulated
CHAC1 5.01736600 8.94 × 10−124 Up-Regulated
MT1G 7.17871586 5.59 × 10−93 Up-Regulated
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FIGURE 1. Identification of differentially expressed genes and association of ferroptosis-related genes with prognosis.
(A) Volcano plots of differentially expressed genes. (B) Venn diagram of differentially expressed ferroptosis-related genes. (C)
Heat map of the 6 differentially expressed ferroptosis-related genes associated with ovarian cancer prognosis.

FIGURE 2. Kaplan-Meier survival analysis of ferroptosis-related genes. (A) ACACA. (B) ALOX12. (C) CRYAB. (D)
HSBP. (E) SLC7A11. (F) STEAP3. Blue lines represent the low-risk group, and red lines represent the high-risk group.
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FIGURE 3. Correlation analysis of differentially expressed genes in ovarian cancer and construction of the LASSO
regression model. (A) Univariate Cox regression analysis on the 6 differentially expressed ferroptosis-related genes. (B)
Correlation analysis among these 6genes. (C) LASSO deviance profiles. (D) LASSO coefficient profiles.
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FIGURE 4. Construction of risk signature for ovarian cancer patients. (A) Risk score for ovarian cancer (B) Survival
differences between the two risk groups evaluated using the Kaplan-Meier method. (C) ROC curves demonstrating the predictive
efficiency of the signature. (D) Survival status for each patient. (E) PCA plot of ovarian cancer patients. (F) t-SNE analysis for
ovarian cancer patients.

FIGURE 5. Univariate and multivariate Cox regression analysis for overall survival of ovarian cancer patients. (A)
Univariate Cox regression analysis. (B) Multivariate Cox regression analysis.
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FIGURE 6. Functional analysis based on the differentially expressed ferroptosis-related genes between the two-risk
groups. (A) Barplot graph for GO enrichment. (B) Bubble graph for GO enrichment. (C) Comparison of immune cell infiltration
between the two groups. (D) Comparison of the immune functions between the two groups.

5. Conclusions

ALOX12, CRYAB, SLC7A11, HSBP1, STEAP3 and ACACA
were identified as differentially expressed ferroptosis-related
genes associated with the survival of ovarian cancer patients.
They were to construct a 6-gene signature which showed
promising efficacy in risk stratification and prognostic
prediction. Altogether, our findings shed new insights into
novel and potential targets for ovarian cancer.
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