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1. Introduction

Abstract

N6-methyladenosine (m6A) methylation dysregulation contributes to tumorigenesis and
breast cancer development. This study intends to conduct a comprehensive analysis
for determining the clinical significance of m6A-related genes and establishing m6A-
related gene-based risk signature to predict the clinical outcomes and neoadjuvant
treatments response for breast cancer patients. The mo6Avar database was utilized
for downloading the mo6A-regulated genes. The Cancer Genome Atlas (TCGA)
database was utilized for downloading breast cancer patients’ RNA-Seq data and
clinicopathological information. For determining the differentially expressed m6A-
related gene, a one-way analysis of variance (ANOVA) was conducted. The interaction
and correlation of m6A-related genes were evaluated using search tool for the retrieval
of interacting genes/proteins (STRING) and Spearmen test. For determining clusters of
breast cancer patients with different clinical outcomes, a consensus clustering analysis
was conducted. We screened differentially expressed genes and functional enrichment
pathways between subgroups utilizing gene ontology (GO) and Kyoto encyclopedia of
genes and genomes (KEGG). We constructed and verified a prognostic signature utilizing
Cox regression analysis as well as a least absolute shrinkage and selection operator
(LASSO) regression model. 286 genes were detected as significantly differentially
expressed in different stages, including 3 m6A RNA methylation regulators, Wilms
tumor 1-associating protein (WTAP), YT521-B homology (YTH) domain containing
2 (YTHDC2), and YTH domain family 2 (YTHDF?2). A 13-gene prognostic signature
was constructed and could predict the overall survival and the neoadjuvant treatments
response in breast cancer patients. We categorized breast cancer patients into four groups
based on m6A-associated RNAs expression. Significant differences were found in the
overall survivals among the four clusters of patients. The biological processes and the
key signaling pathways closely related to breast cancer have a close connection to the
four clusters. This study confirmed that the m6A-related genes expression levels were
highly associated with prognosis and neoadjuvant treatment response in breast cancer
and constructed an effective m6A-related gene-based risk signature for predicting the
prognosis of patients with breast cancer.
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prognostic markers for breast cancer.
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In the United States, the leading cancer among women is breast
cancer, with approximately 276,480 new cases and 42,170
deaths in 2020 [1]. Previous studies have suggested lymph
node status, tumor size, and tissue grade as predictors for the
clinical outcomes of breast cancer patients [2—4], although
these factors’ accuracy varied when applied to different pop-
ulations [5]. It is critical to determine accurate and reliable

In breast cancer, considerable genetic and epigenetic alter-
ations could be utilized as biomarkers for cancer detection,
treatment and prognosis [5, 6]. The most prevalent epigenetic
modification that occurs in the N6-position of adenosine in
eukaryotic mRNA is N6-methyladenosine (m6A) [7]. m6A
methylation is enriched in the RRACH motif (R: A/G, H:
A/C/U) near the stop codon, 3’ untranslated regions, and
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the internal long exons [8], being installed by methyltrans-
ferases (writers), determined by methyl-binding proteins (read-
ers), and removed by demethylases (erasers) [9, 10]. The
mo6A pattern affects the expression of the modified RNA,
thus influencing the corresponding biological processes and
functions. Dysregulation of m6A methylation has a role in
pathogenesis and development of various human diseases, in-
cluding breast cancer, bladder cancer, and endometrial cancer
[11, 12]. Breast cancer progression was reported to associate
with the alterations in m6A writers such as methyltransferase
like 3 (METTL3) [13] and WT1-associated protein (WTAP)
[12], with the reader such as YT521-B homology (YTH) N6-
methyladenosine RNA-binding proteins (YTHDF3) [14], and
with the eraser such as alkB homolog 5 (ALKBHS) [15]. Even
so, m6A role in breast cancer and m6A-related genes prognos-
tic value in breast cancer remains obscure. In this study, using
the Cancer Genomic Atlas (TCGA), we determined m6A-
related genes expression is significantly differential among dif-
ferent breast cancer stages. The interaction and correlation
among these m6A-related genes were evaluated. Taking ad-
vantage of the consensus clustering analysis, a list of genes
that could classify breast cancer patients with different clinical
outcomes was obtained. Then, a 13-gene risk signature was
simulated within TCGA breast cancer cohort and it showed
promising performance of this risk signature for prognosis pre-
diction. Furthermore, we validated this prognostic signature in
a TCGA validation cohort and an independent external breast
cancer cohort.

2. Materials and methods

2.1 Data collection

For analyzing m6A role in breast cancer, the TCGA database
was utilized to acquire the RNA-Seq expression profile and
clinical characteristics of 1218 breast cancer samples.

To verify the prognostic signature in TCGA for neoadjuvant
treatment response in patients with breast cancer, we excluded
the databases with small sample size, lack of survival result
or unitary molecular type. Finally, we collected data from
two independent cohorts using the Gene Expression Omnibus
(GEO) database, which included data of 310 breast cancer
patients who received neoadjuvant treatments from GSE25055
and 182 from GSE25065. The candidate m6A-related genes
associated with breast cancer were obtained from review ar-
ticles published from 2017 to 2019 and from the mé6avar
database (http://m6avar.renlab.org/).

2.2 Consensus clustering Analysis

We discovered differentially expressed m6A-related genes (p
< 0.05) in different breast cancer stages according to the
RNA-Seq expression profile of breast cancer samples from
the TCGA database. These genes were utilized as classifiers
for recognizing breast cancer subtypes. Consensus clustering
was performed to classify the breast cancer samples using the
R package of “Consensus Cluster Plus”. We computed gap
statistics [15] from K = 2 to 10 for determining the optimal of
clusters number. The optimal K was considered as the K where
the proportional area change under the cumulative distribution

function (CDF) curve reaches its maximum.

2.3 Construction of protein-protein
interaction (PPI) network

We constructed a PPI network and mapped differentially ex-
pressed m6A-related genes (n = 286) to the Search Tool for
the Retrieval of Interaction Genes database (STRING, http:
//string.embl.de/). The p-value was less than 0.01, and
the minimum required interaction score was 0.3.

2.4 Gene ontology (GO) and Kyoto
encyclopedia of genes and genomes (KEGG)
pathway analysis

The Database for Annotation Visualization and Integrated Dis-
covery (DAVID, https://david.ncifcrf.gov/) was uti-
lized to conduct GO annotation and KEGG pathway enrich-
ment analyses. For biological pathway analysis, p-value <
0.001 and gene counts >2 were set as threshold. For KEGG
pathway analysis, p-value < 0.05 and gene counts >2 were set.

2.5 Construction and validation of a
prognostic signature based on m6A-related
genes

The differentially expressed m6A-related genes (n = 286) in
various stages of breast cancer were analyzed utilizing the R
package ‘Survival® related to patient’s prognosis. The rela-
tion between differentially expressed genes and overall patient
survival was determined utilizing multivariate Cox regression
analysis in the TCGA training dataset (n = 720). The genes
with p < 0.05 were defined as candidate survival-related genes.
For identifying survival-related genes, we constructed a least
absolute shrinkage and selection operator (LASSO) regression
model utilizing the R package glmnet. We calculated each
patient’s risk score as follows:

Risk score = Z Coef; x Exp;

i=1

In compliance with the median level of risk score, we
classified patients into high-risk and low-risk groups.
We established Kaplan-Meier survival curves. The
gene-based prognostic model’s sensitivity and specificity
in prediction of patients’ clinical outcomes were assessed
using receiver operating characteristic (ROC) analysis.
The risk scores in the TCGA validation (n = 480) cohort
were determined for evaluating the prognostic model’s
strength. Additionally, the 13-gene-based risk scores were
computed for patients in GSE25065 (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE25065)
and GSE25055 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE25055) databases to further verify
the prognostic and predictive values of neoadjuvant treatment
response of the risk signature. Since, the panel, which is used
in the combined dataset of GSE25055 and GSE25065, is not
contained 4 of the 13 genes. We assigned the four missing
genes values as zeros.
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TABLE 1. Clinicopathological characteristics of patients with breast cancer from the TCGA database.

parameter subtype n
Age (yr)
>50 838
<50 380
Gender
female 1202
male 13
Unknown 3
Pathologic stage
I 202
II 691
111 277
v 22
Unknown 26
Pathologic-M
MO 1021
M1 24
MX 173
Unknown 8
Pathologic-N
NO 561
N1 416
N2 132
N3 83
Unknown 26
Pathologic-T
T1 310
T2 705
T3 150
T4 47
Unknown 6
PAMS50 Call-RNAseq
Basal 142
LumA 434
LumB 194
Her2 67
Normal 119
Unknown 262
Tumor status
Distant Metastasis 67
Locoregional Disease 9
Locoregional Recurrence 13
New Primary Tumor 21
Unknown 1108

PAMS50: Prediction Analysis of Microarray 50.

2.6 Statistical analysis

Statistical analysis was done utilizing the R packages listed
above under R software (version 3.6.0, The Free Software

Foundation, Inc., Boston, MA, USA). The m6A-related gene
expressions in different breast cancer stages were compared
utilizing univariate ANOVA. p < 0.05 was the threshold. Clin-
ical data were treated as categorical variables. We used Chi-
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square test when detecting the relationship between categorical
variables. PPI network was analyzed using Spearman’s rank
correlation coefficient, followed by rank-sum test.

3. Results

3.1 The differentially expressed
m6A-related genes in different stages of
breast cancer

The normalized RNA-Seq data of 1218 breast cancer samples
were downloaded through the TCGA database. Table 1 illus-
trates the clinical characteristics. Among these samples, 202
were classified in stage I, 691 were in stage II, 277 were in
stage III, and 22 were in stage V. The 26 samples without
pathologic stage information were excluded.

The process of bioinformatic analysis is shown in
Fig. 1A. By data mining from published literatures,
16 candidate mo6A-related genes associated with breast
cancer were selected, comprising methyltransferase 3,
No6-adenosine-methyltransferase complex catalytic subunit
(METTL3), insulin like growth factor 2 mRNA binding
protein 1 (/IGF2BPI), methyltransferase 14, N6-adenosine-
methyltransferase subunit (METTL14), alkB homolog 5, RNA
demethylase (ALKBHS), vir like m6A methyltransferase
associated (KIAA1429), zinc finger CCCH-type containing
13 (ZC3H13), YTH domain containing 1 (YTHDCI), RNA
binding motif protein 15 (RBMI15), YTHDC2, YTHDF?2,
heterogeneous nuclear ribonucleoprotein C (HNRNPC), FTO
alpha-ketoglutarate dependent dioxygenase (F70), WTAP,
methyltransferase 16, N6-methyladenosine (METTL16), YTH
N6-methyladenosine RNA binding protein 3 (YTHDF3),
and YTH N6-methyladenosine RNA binding protein 1
(YTHDF1) [16—-18]. Additionally, 1630 m6A-related genes
associated with breast cancer was found by the mé6avar
database examination (http://m6avar.renlab.org/).
After excluding the genes without expression values in the
breast cancer samples or expressed in fewer than 80% of
samples, we obtained 1331 candidate genes.

For determining m6A-related genes associated with breast
cancer staging, we utilized univariate analysis and obtained
286 mo6A-related genes that were differentially expressed
across the 4 stages (p < 0.05), comprising 3 m6A RNA
methylation regulators: WTAP, YTHDC?2, and YTHDF?2. For
visualizing 286 genes expression in the TCGA samples, a
heatmap was constructed (Fig. 1B).

3.2 m6A-related genes consensus clustering
identifies four breast cancer samples
clusters with various clinical outcomes

Following the determination of the 286 m6A-related genes
that were differentially expressed across various breast cancer
stages, consensus clustering was performed to classify the
1218 patients from TCGA. We computed gap statistics for K
=2 to 10 (Fig. 2A-B). The proportional area change under
the CDF curve peaked at K = 4, suggesting that four subtypes
were optimal for categorizing the patient samples. Therefore,
we classified the 1218 breast cancer samples into type of
malignancy (TM) 1 (n = 304), TM2 (n = 398), TM3 (n =

510), and TM4 (n = 6) subgroups (Fig. 2C). By comparing
the clinical data of these subgroups, we observed significant
differences in gender, N stage, T stage, and Prediction Analysis
of Microarray 50 (PAMS50) subtype among these subgroups
(all p < 0.05; Fig. 2D). In the M stage or pathologic stage,
no significant difference was observed. Furthermore, Kaplan-
Meier survival analysis demonstrated that the overall survivals
differed significantly across the subgroups in descending order
of TM1, TM2, TM3, and TM4 (p = 0.0020; Fig. 2E), suggest-
ing that the 286 genes could classify the breast cancer samples
with different clinical outcomes.

3.3 The correlation and interaction among
the mé6A-related genes

For interactions examination among the 286 mo6A-related
genes, the protein-protein interactions were predicted utilizing
the STRING database. The interaction network is displayed in
Fig. 3A, including the interactions among YTHDC2, WTAP,
and YTHDF2. Spearman correlation analysis revealed 8781
pairs of significantly correlated m6A-related genes (Fig. 3B).

3.4 Functional annotation of m6A-related
genes

Next, to understand the m6A-related genes’ biological signifi-
cance in breast cancer, functional annotation was conducted.
We selected 239 m6A-related genes that were differentially
expressed across TM1—4 subgroups (one-way ANOVA, p <
0.05). Asshown in Fig. 4A, these genes were mainly annotated
with biological processes, including chromatin remodeling,
signal transduction, positive regulation of protein tyrosine ki-
nase activity, histone H3-K4 methylation, and cytokine pro-
duction. According to KEGG pathway analysis, these genes
are mainly enriched in microRNA in cancer, Phosphoinositide
3-Kinase (PI3K)- protein kinase B (PKB/Akt) (PI3K-Akt)
pathway, and calcium signaling pathway (Fig. 4B). Further-
more, ATP binding cassette subfamily B member 5 (4BCBY),
adaptor related protein complex 4 subunit epsilon 1 (4P4E]),
Rho guanine nucleotide exchange factor 19 (ARHGEF19), Rho
guanine nucleotide exchange factor 3 (4RHGEF3), cholinergic
receptor nicotinic alpha 6 subunit (CHRNAG), PHD and ring
finger domains 1 (PHRFI), PR/SET domain 10 (PRDM10),
TBC1 domain family member 15 (TBC1D15), tubulin alpha 3d
(TUBA3D), and Wnt family member 3A (WNT3A) were iden-
tified as independent prognostic factors, serving as therapeutic
targets and potential biomarkers for breast cancer prognosis
and treatment.

3.5 Validation and identification of
gene-based prognostic signature

To evaluate and test m6A-related genes prognostic value in
breast cancer, we collected 1200 breast cancer samples with
the survival data through the TCGA database and randomly
split them into 5 cohorts, 3 cohorts for training (n = 720),
and 2 cohorts for validation (n = 480). The clinical charac-
teristics are summarized in Table 2. After multivariate Cox
regression analysis in the training dataset, we noticed that 20
out of 286 m6A-related genes were related significantly to the
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A TCGA. BRCA. RNA_ seq_data,
1218 breast cancer samples
A total of 1630 m6A-related genes by
searching the m6avar database

|

Stage different_ genes

1200 Dbreast cancer samples l
collected from the TCGA Consistent clustering using
database were randomly split differences candidate gene sets
into training (n = 720) and between stages to obtain subgroups
validation (n = 480) cohorts. l
A multivariate Cox regression anjal){sis Compare pathological characteristics
was used to dete{mme the association and survival between subgroups
between differentially expressed genes l
and overall survival of patients in the STRING |
TCGA training dataset (n= 720) Analyze the interaction between the m6A
candidate gene set

[ (S | — 1

Assess the accuracy of various clinical
information according to high and low
risk groups

Screening and pathway
enrichment analyses of
differentially  expressed
genes between subgroups

KEGG pathway

B BRCA From TCGA Dataset

FIGURE 1. The differentially expressed m6A-related genes in different stages of breast cancer. (A) An overview of the
process of bioinformatic analysis. (B) The heatmap of the expression of 286 differentially expressed m6A-related genes in breast
cancer samples from TCGA database. TCGA: The Cancer Genome Atlas; GO: gene ontology; KEGG: Kyoto encyclopedia of
genes and genomes; STRING: search tool for the retrieval of interacting genes/proteins; BRCA: breast cancer.
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FIGURE 3. The interaction and correlation among the mé6A-related genes. (A) Protein-protein interaction graph. Proteins
are represented as nodes, and possible relationships are represented by lines. (B) Correlations among 286 m6A-related genes.
Spearman’s correlations are color-coded to reveal negative (red) or positive (blue) associations.

overall survival (all p < 0.05). Fig. 5A displays the p-values and hazard ratios (HR). The LASSO regression model further
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identified 13 independent prognostic genes (Fig. SB—C). Thus,
for estimating the patients’ survival risk, a 13-gene prognostic
model was developed.

Then, the risk score was calculated for each patient, and
the training and validation cohorts were divided into high-
and low-risk groups, respectively, by the median risk score
utilization as the cut-off value. Fig. 5D demonstrated that
in the training cohort, overall survival in the high-risk group
was significantly lower than in the low-risk group (p = 2.42
x 10~7). The validation cohort yielded consistent results (p
=0.0041; Fig. 5E). Fig. 5F-G display the distributions of the
overall survivals and risk scores of the two cohorts.

3.6 The prognostic signature-based risk
scores can predict the clinical outcomes and
the response to neoadjuvant treatment in
breast cancer patients

After comparing the entire cohort’s clinical data (n = 1200), we
observed significant differences in different PAMS50 subtypes
(p=4.55 x 10~2%) or pathologic stages (p = 0.0402) (Fig. 6A—
C), but not in gender, age, pathologic stage, M stage, N stage,
T stage, or the mutation in breast cancer 1 (BRCA1) or breast
cancer 2 (BRCA2).

Next, we determined whether the 13-gene risk signature has
prognostic value in patients with breast cancer. As illustrated
in Fig. 6D-H, the risk model performed well in the entire
cohort, with the area under curves (AUCs) of ROC curves
at 0.641, 0.705, 0.709, 0.683, and 0.725 at 1, 2, 3, 4, and 5
years, respectively. In comparison with long-term disease-free
survivors (n = 1090), patients with distant metastasis (n = 67)
had significantly lower overall survival, as detailed in Fig. 61.

Finally, we identified 13-gene risk signature’s value for
predicting responsiveness to neoadjuvant treatments in patients
with breast cancer. Data of 310 breast cancer patients who
administered neoadjuvant treatments from GSE25055 and 182
from GSE25065 were acquired and combined into one dataset.
The dataset contained RNA-Seq data and clinical information,
such as stage, response to neoadjuvant treatments (patholog-
ical complete response (pCR) or residual disease (RD)), and
survival information. Notably, the panel, which is used in
the combined dataset of GSE25055 and GSE25065, is not
contained 4 of the 13 genes. We assigned the four missing
genes values as zeros, when the 13-gene-based risk score
was calculated. For visualizing 9-gene expression, a heatmap
was constructed and shown in Fig. 7A. Consistent with the
findings presented earlier, the 13-gene-based risk scores were
significantly different in different responses to neoadjuvant
treatments (p = 0.0082) and pathologic stages (p = 0.0005)
in the cohort (Fig. 7B—C). Overall survival of the high-risk
group was shorter than that of the low-risk group (Fig. 7D,
p = 0.0138). Above all, the prognostic signature-based risk
score could be a robust predictor of the clinical outcomes
and responsiveness to neoadjuvant treatments in breast cancer
patients.

4. Discussion

In this study, m6A-related gene expression was assessed in
different breast cancer stages. According to 286 m6A-related
gene expression pattern that were differentially expressed
across different breast cancer stages, the TCGA breast cancer
dataset was classified into four subgroups (TM1-4) with
significant differences in the overall survival as well as other
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TABLE 2. Clinicopathological characteristics of patients in the training and validation cohorts.
Training cohort  Validation cohort

Vairable (n = 720) (n = 480)
Age (yr)
>50 492 333
<50 228 147
Gender
female 713 474
male 7 6
Pathologic stage
I 129 68
II 415 279
111 147 117
v 14 10
Unknown 15 6
Pathologic-M
MO 595 411
M1 16 8
Unknown 109 61
Pathologic-N
NO 338 213
N1 248 164
N2 77 55
N3 44 38
Unknown 13 10
Pathologic-T
T1 197 113
T2 412 284
T3 84 62
T4 24 20
Unknown 2 1
PAMS50Call-RNAseq
Basal 86 54
LumA 250 179
LumB 122 68
Her2 36 28
Normal 67 50
Unknown 159 101
Tumor status
Distant Metastasis 39 28
Locoregional Disease 6 3
Locoregional Recurrence
New Primary Tumor 9 12
Unknown 661 429

clinicopathologic features including gender, N stage, T stage, and PAMS50 subtypes. Moreover, a 13-gene risk signature was
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FIGURE 5. Prognostic signature validation and construction based on breast cancer cohorts from TCGA. (A) Univariate
analysis identified 20 m6A-related genes that significantly correlated with overall survivals of breast cancer patients from TCGA.
(B) ALASSO regression model of the 20 m6A-related genes. (C) The regression coefficients of 13 independent prognostic genes.
(D and E) Kaplan-Meier survival curves for participants allocated to high- or low-risk groups based on risk scores in the training
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Genome Atlas.
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FIGURE 6. The prognostic signature-based risk scores can predict the clinical outcomes of breast cancer patients. (A)
The heatmap reveals the 13 m6A-related genes expression levels within patients arranged according to risk scores. We compared
risk scores distribution among the patients with different PAMS50 (B) and pathologic stages (C). (D—H) ROC curves indicate the
13-gene risk signature’s predictive efficiency for 1-, 2-, 3-, 4-, and S-year survival rates. (I) Kaplan-Meier survival curves for
patients with distant metastasis (n = 67) and long-term disease-free survivors (n = 1090). TCGA: The Cancer Genome Atlas;
ROC: receiver operating characteristic; AUC: area under curves; PAMS50: Prediction Analysis of Microarray 50.

constructed according to breast cancer training dataset from
TCGA, and patients were categorized into high- and low-risk
groups. This risk signature performed well in predicting
overall survival in breast cancer patients and was verified
further in an independent TCGA breast cancer cohort as well
as an external dataset, suggesting that this prognostic model
is reliable for prognosis prediction. Additionally, the risk
signature demonstrated the predictive value of neoadjuvant
treatment response in breast cancer in external cohort.

moOA regulators are aberrantly expressed in different cancer
types, being encompassed in tumorigenesis and tumor progres-
sion. For instance, WTAP expression is significantly reduced
in breast cancer in comparison with normal controls. Reduced
WTAP expression is related to a poor prognosis in breast cancer
patients [12]. In contrast, WTAP is overexpressed in hepatocel-
lular carcinoma (HCC), serving as an independent predictor
for poor prognosis in HCC patients [19]. In colon cancer,
YTHDC?2 expression is positively correlated with the tumor
stage [20]. Similarly, YTHDF?2 expression is upregulated in
pancreatic cancer tissue compared with normal tissue and is
greater in clinical patients with advanced cancer stages [21]. In

our study, we found that WTAP, YTHDC?2, and YTHDF?2 were
significantly differentially expressed across different breast
cancer stages, suggesting that these m6A regulators might
be related to breast cancer progression and prognosis. Both
YTHDC2 and YTHDF2 are m6A “reader” proteins of the YTH
family, harboring a conserved hydrophobic binding pocket
specific for m6A [22]. The PPI network analysis in this study
provided detailed interaction among WTAP, YTHDC2, and
YTHDEF2, which has not been reported elsewhere and needs
further investigation.

Based on m6A-related genes expression following consen-
sus clustering, we identified four breast cancer subgroups and
observed significant differences in gender, N stage, T stage,
and PAMS50 subtype among these subgroups. Furthermore,
Kaplan—According to Meier survival analysis, overall sur-
vivals were significantly different across the subgroups in
descending order of TM1, TM2, TM3, and TM4, suggesting
that m6A-related genes levels are highly associated with poor
prognosis of breast cancer. It was also demonstrated that the
differentially expressed m6A-related genes in these four sub-
types were related to certain biological processes and signaling
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pathways. PI3K-Akt pathway is commonly activated in breast
cancer [23], and its activation has been related to endocrine
resistance and a poor prognosis in certain subgroups [23]. Co-
incidentally, the patients in TM4 are luminal type and had the
poorest prognosis. Alterations in miRNA and calcium signal-
ing pathways are linked to breast cancer diagnosis, metastasis,
prognosis, and drug resistance [24, 25]. Our study indicated
the potential biological process and signaling pathways linking
m6A methylation and breast cancer development, representing
a crucial step toward development of therapeutic strategies
targeting m6A methylation for breast cancer treatment.

Besides the 16 candidates, m6A-related genes associated
with breast cancer selected from articles, a 13-gene risk signa-
ture related to clinic-pathological characteristics, and clinical
prognosis outcome of breast cancer patients were identified
and validated in this study. Among these genes, WNT3A4 [26],
PRDM10 [27], TUBA3D (28], PHRFI [29], ARHGAP6 [30],

and ABCBS [31] implicated in breast cancer pathogenesis or
prognosis, suggesting that our TCGA data-based analyses have
predictive value.

5. Conclusions

This is the first report of a prognostic model of m6A-related
genes for patients with breast cancer, which has a predictive
value of the response to neoadjuvant treatment. The 13-gene-
based risk score can predict prognosis and responsiveness
to neoadjuvant treatment in breast cancer patients. These
findings may provide important information for prognostic
stratification and therapeutic strategies for breast cancer. Fur-
ther research will be performed to research and verify the
effects mechanism of risk genes on breast cancer development
through m6A modification.
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