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Abstract

Uterine corpus endometrial adenocarcinoma is the prevalent gynaecological malig-
nancy. The related morbidity and mortality are high despite the progress made in
treatments. Therefore, efficient prognostic indicators and reliable predictive factors
for the treatments are vital. In this study, the transcriptome and clinical data of
endometrial adenocarcinoma samples were screened and downloaded from The Cancer
Genome Atlas Program (TCGA) database. The relation between immune cell types
and clinicopathological grade of endometrial adenocarcinoma was explored. The
endometrial adenocarcinoma samples were divided into six immune subtypes based on
immune microenvironment scores. The differential genes in immune subtypes were
classified according to the score, and correlation enrichment analysis was made to
explore the immune pathways related to prognosis and survival. They were divided
into high and low risk groups according to the median risk score in order to explore
the survival outcomes of the various immune scores. Finally, the relationship between
tumour mutation burden, immune subtypes, and prognosis was discussed. Herein,
the endometrial adenocarcinoma is classified based on immune microenvironment
which demonstrates good predictive potential of immune-based classification strategy.
The predicted outcomes are described for the patients at high risk of endometrial
adenocarcinoma to improve the treatment strategies. Immune risk score can be used as
an independent risk factor for overall survival of endometrial adenocarcinoma patients.
This immune-based classification system can prognose endometrial adenocarcinoma
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patients at high risk.
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1. Introduction

Endometrial cancer is one of the three most prevalent gynaeco-
logical malignancies with its worldwide incidence on the rise
[1, 2]. It was estimated that 65,620 new cases and 12,590 sub-
sequent deaths occurred in 2020 in the United States [3], where
~80% were the estrogen-dependent type I endometrial cancer,
also known as endometrial endometrioid adenocarcinoma [4].
The relapse and metastasis occur in 13—-25% of patients de-
spite the endometrial endometrioid adenocarcinoma has good
prognosis. Metastasis and tumour spread are often the main
causes of poor prognosis [5]. The endometrial adenocarcinoma
survival rates in developing countries are lower than those
in developed ones and vary between geographical regions.
The effective prognostic indicators and guided treatments are
thus crucial [6]. Classification systems for uterine corpus
endometrial cancer have been developed over time to predict
patient outcomes and define adequate treatment strategies.

The molecular classification of  endometrial
adenocarcinoma mainly based on gene expression profiling
and selected IHC can accurately reflect the prognosis of
patients. Several studies have explored the molecular aspects
of endometrial adenocarcinoma based on gene expression
and mutational burden; however, limited studies are available
on the immune types of endometrial adenocarcinoma.
The tumour microenvironment (TME) is an extracellular
matrix secreted by tumour, stromal, endothelial, immune,
and tumour-associated cells. =~ The components in TME
interact with tumour cells to regulate their growth and
development [7]. It has been demonstrated in recent years that
development and metastasis of malignant cells are associated
with TME [8, 9]. Moreover, TME has role in uterine corpus
endometrial adenocarcinoma development and its response to
immunotherapy as a number of immune cells and cytokines
are involved in endometrial adenocarcinoma [10].

In this study, the data from TCGA database was screened
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and selected in relation to endometrial adenocarcinoma, ex-
cluding the data linked to mucous, serous, clear cell carcinoma,
and carcinosarcoma. Immune-related subtypes of uterine cor-
pus endometrial adenocarcinoma were explored based on the
abundance and microenvironment scores of immune cells in-
filtrating the tumours. Their clinical features and prognostic
significance were also evaluated. Uterine adenocarcinoma
was further assessed according to the differential analysis of
identified immune subtypes based on stable genotypes, and
the relationships between signalling pathways profiles and
clinical characteristics, prognostic significance, and specific
heterogeneity. Finally, the relationships between immunotype
groups, tumour mutational burden, and prognostic significance
were investigated. The study outcomes can provide theory for
future immunotherapy to treat endometrial adenocarcinoma.

2. Materials and methods

2.1 Data processing

Uterine corpus endometrial adenocarcinoma datasets were
obtained from The Cancer Genome Atlas (TCGA). TCGA
Knowledge Base (https://portal.gdc.cancer.gov/repository),
UCSC Xena (https://xenabrowser.net/datapages/),  and
cBioPortal for Cancer Genomics (http://www.cbioportal.org/)
databases were used to collect transcriptome data, mutation
data, and clinical information. Sample data of 405 endometrial
adenocarcinoma patients were downloaded.

2.2 Identification and genotyping of uterine
corpus endometrial adenocarcinoma
subtypes based on immune cells

Clustering may have bias because of the small number of
samples per pathological grade in endometrial adenocarci-
noma. All endometrial adenocarcinomas were used for the
immunoassay to explore relation between immune cell types
and clinicopathologic grades through TME scores. The 28
immune gene sets were used to determine tumour immunity
[I1]. The gene set variation analysis package was employed
for single-sample Gene Set Enrichment Analysis (ssGSEA)
of 28 immune cells types for each uterine corpus endometrial
adenocarcinoma dataset. The identified subsets were further
genotyped using limma R package (v3.50.0). The consensus
clustering, molecular subtype screening of ssGSEA scores (k
= 2-9), and genotype screening (k = 1-12) of immune sub-
types were conducted by The Consensus Cluster Plus package.
Briefly, clustering was performed with 50 iterations (each us-
ing 80% samples). The optimal cluster number was determined
from the clustering score of cumulative distribution function
curve, and relative changes in area under the curve were
evaluated. Genes meeting the screening criteria (p < 0.05,
cut-off criteria, and |log fold-change| > 1.0) were divided into
high and low expression groups according to the relationship
between gene expression and genotyping. The two groups
were compared.
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2.3 Immune cell correlation assessment

The ESTIMATE algorithm [12] was implemented using esti-
mation package to identify the specific features associated with
stromal and immune cells infiltration in the tumour, based on
transcriptome data. The corrplot package was employed to find
correlations between immune cells.

2.4 Heatmap

The equation xi’ = (xi-xmin)/(xmax-xmin) converted ssGSEA
score (xi’) of uterine corpus endometrial adenocarcinoma sam-
ple i to xi’, where xmax and xmin are the maximum and
minimum ssGSEA scores for samples in uterine corpus en-
dometrial adenocarcinoma dataset, respectively. The heatmap
was visualized by heatmap package.

2.5 Overall survival curve

Mapping the Kaplan-Meier curve revealed relation between
patient overall survival and genomic expression profiles. The
relationship was tested using log-rank test. p < 0.05 in relation
to the cut-off value was employed for selecting the survival-
dependent immune cell infiltration (ICI) scores.

2.6 Functional annotation of gene
clustering

The ClusterProfiler package was utilized to perform Gene
ontology (GO) [13, 14], and Kyoto Encyclopaedia of Genes
and Genomes (KEGGQG) [15] pathway enrichment analyses.

2.7 Gene set enrichment analysis (GSEA)

The samples expression matrix classified as immune
scores in TCGA dataset was used for GSEA with
“c2.cp.kegg.v7.0.symbols.gmt” as the reference gene set.
Using GSEA v4.0, the number of permutations was set to
1000, and false discovery rate <0.05 as the filtering threshold.

2.8 Correlation estimates between
immunisation scores and TMB

Tumour mutation burden (TMB) is the sum of mutations and
genetic variations in tumour cells. All base substitutions and
insertions-deletions in the target gene coding region were thus
counted. Silent mutations failing to contribute toward amino
acid changes were not considered. The sample TMB score
was calculated by counting the total number of mutations in
relation to the exome size 45 Mb as exome size estimate
[16]. Two maf files having somatic cell variants of uterine
corpus endometrial adenocarcinoma samples were detected by
VarScan and visualised via the maftools package [17]. The
immune scores were correlated to TMB using the ggpubr R
package (v0.4.0).

2.9 Assessment of immune score and
clinical relevance

Immune scores were combined with the clinical data from
TCGA database to assess the clinical survival outcomes of high
and low immune scores patients and explore the differences
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between these groups under various clinical conditions. Logis-
tic regression using Kaplan-Meier methods assessed the cor-
relations between clinical stages, immune scores, and overall
survival.

2.10 Statistical analysis

Statistical analysis was performed using the free statistical
computing software R (v3.6.0, R Project, Vienna, Austria).
Kaplan-Meier survival analysis determined the survival curve
reflecting association between genetic mutations and prognosis
via the log-rank test. Two-tailed p value < 0.05 was considered
statistically significant for all comparisons.

3. Results

3.1 Identification and immunologic
characteristics of uterine corpus
endometrial adenocarcinoma subtypes
based on immune profile

Data of 405 endometrial adenocarcinoma samples were down-
loaded from TCGA database. All samples had been employed
for immunoassay. First, the relationship between immune cell
infiltration and pathological grade was studied. The results
exhibited that Memory B cells, T-helper type 2 cells, effector
memory cluster of differentiation 4 (CD4) T cells, eosinophils,
type 17 helper T cells, activated CD4 T cells, plasmacy-
toid dendritic cells, monocytes, central memory CD8 T cells,
macrophages, regulatory T cells, CD56 dim natural killer cells,
and vdT cells were correlated with pathological grades (p <
0.05). Memory B cells, type 2 helper T cells, effector CD4 T
cells, eosinophils, type 17 helper T cells, and activated CD4
T cells were significantly correlated (» < 0.0001), indicating
strong correlation between immune cell types and clinico-
pathological grades (Supplementary Fig. 1). The ssGSEA
scores were then implemented on 28 samples associated with
immune cells. Results depicted that the samples could be
divided into 6 subtypes (Fig. 1A). Further analysis of vari-
ous subtypes according to clinical outcomes revealed that the
immune subtypes impacted the clinical prognosis (p = 0.039;
Fig. 1B). The R software package ESTIMATE evaluated the
Stromal Score, Immune Score, and ESTIMATE Score between
A, B, C, D, E and F subtypes. The ssGSEA investigated 28
immune cell types. ESTIMATE results showed that subtype C
had the highest tumour immune infiltration, while subtype E
had the lowest. The ssGSEA results indicated that activated B
cells, activated CD 4 T cells, activated CD 8 T cells, immature
myeloid-derived suppressor cells (MDSC), and immune cell
abundance in C subtype were higher than those of the other
five subtypes (Fig. 1C). The correlation analysis confirmed
that the clustering was associated with immune cells presence
(Fig. 1D). The heat maps of tumour-infiltrating immune cell
(TIIC) distribution across six subtypes are shown in Fig. 1E.
It is speculated that the subtype C may respond better to
immunotherapy.

3.2 Genotyping and characterisation of
uterine corpus endometrial
adenocarcinoma based on immune subtypes

The genotyping of uterine corpus endometrial adenocarcinoma
dataset revealed that the samples could be divided into seven
subtypes (1-7) according to differentially expressed gene pat-
terns (Fig. 2A—C). However, this genotypic classification did
not affect the clinical prognosis of patients with p > 0.05
(Fig. 2D). ESTIMATE evaluated the matrix and immune scores
among seven subtypes of differentially expressed genes. The
ssGSEA evaluated the 28 immune cell types. ESTIMATE
results exhibited genotype G with the highest tumour immune
infiltration, while genotype A with the lowest. The ssGSEA
results depicted that the abundance of immature cells, MDSC
cells, Monocyte cells, T follicular helper cells, and Type 1 T
helper cells in G subtype were higher than those in the other
six subtypes. The abundance of Effector memory CD4 T cells,
Memory B cells, and Plasmacytoid dendritic cells in subtype
C were higher than those in other six subtypes. The abundance
of most immune cells in subtype A was lower than that in other
six subtypes. The abundances of CD56 bright natural, natural
killer T cells, Eosinophil, Neutrophil, and Type 17 T helper
cells were not different among the seven subtypes (Fig. 2E). A
heat map of TIIC distribution for the seven genetic subtypes is
shown in Fig. 1E. The genotype A was positively associated
with uterine corpus endometrial adenocarcinoma genotyping
having more genotypes and increased gene expression, while
the other subtypes were negatively associated with genotyp-
ing having more genotypes but decreased gene expression
(Fig. 2F).

3.3 Immune scoring and GO enrichment
analysis

The clinical prognosis of uterine corpus endometrial adeno-
carcinoma was evaluated based on the genotypically defined
cancer subtypes. No significant difference in the clinical prog-
nosis of uterine corpus endometrial adenocarcinoma was found
according to the genotypic cancer subtypes (p > 0.05; Fig. 3A).
However, GO and KEGG enrichment analysis revealed that B
cell activation and immunoglobulin receptors were enriched
in the high ICI group, while RNA splicing, and ribosomes
were enriched in the low ICI group. The high ICI group may
thus respond better to immunotherapy (Fig. 3B-E). Based on
uterine corpus endometrial adenocarcinoma genotyping, most
genotype A patients and all subtypes D and F patients had
high ICI scores, whereas most genotypes B and C patients and
all genotype E patients had low ICI scores. Patients of high
ICI scores had higher survival rates than those with low ICI
scores (Fig. 3F). Proprotein Convertase Subtilisin/Kexin Type
4 (PCSK4), Cyclin dependent kinase inhibitor 24 (CDKN2A4),
Indian hedgehog homolog (IHH), Leucine Rich Repeat Con-
taining 8 VRAC Subunit D (LRRCS8D), Cathepsin W (CTSW)
and TNF Receptor Superfamily Member 18 (TNFRSF18) were
analysed in high and low score groups as per the literature
[13, 14]. IHH, PCSK4, and LRRCS8D expressions were sig-
nificantly different. /[HH and PCSK4 were upregulated in the
low ICI group, and LRRCSD in high ICI group (Fig. 3G).
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3.4 Tumour mutational burden score and
GSEA analysis

KEGG analysis of biological changes associated with each
uterine corpus endometrial adenocarcinoma subtype showed
that E2F-targets, G2M-checkpoint, mitotic spindle, and MYC
proto-oncogene (MY C)-targets-V 1 pathways were enriched in
the high and low ICI score groups (Fig. 4A). The genes DEP
Domain Containing 1 (DEPDCI) and Diaphanous Related
Formin 3 (DIAPH3) depicted abnormal expression in E2F-
targets (Fig. 4B). There were abnormalities in microtubule as-
sociated protein-2 (MAP2L1), Exonuclease 1 (EXOI), Struc-
tural Maintenance of Chromosomes 4 (SMC4), and Kinesin
Family Member 15 (KIF15) metabolism of G2M-checkpoint,
mitotic spindle, and xenobiotic spindle (Fig. 4C-E). ICI score
subtype affected TMB (p = 1.1 x 1075; Fig. 4F) having
correlation between immune genotyping and TMB (p =3.2 x
10~8; Fig. 4G).

3.5 Relationship between high/low TMB and
clinical correlation analysis of immune
scores

The overall survival was not improved in patients with high
TMB than those with low TMB (p = 0.054; Fig. 5A). However,
uterine corpus endometrial adenocarcinoma patients with high
TMB and low ICI scores had the highest overall survival,
while those with low TMB and high ICI scores had the worst
(» = 0.007; Fig. 5B). PTEN mutation frequency in high ICI
scores group was higher than that in low ICI scores patients
(Fig. 5C,D). Overall, the high and low ICI scores patients had
similar survival rates (Fig. 5SE). There were no differences in
immune scores of various clinical traits or in the patients who
survived and died (p = 0.63, Fig. 5F). The immune scores were
thus unsuitable for analysing the patients of different clinical
stages (p > 0.05; Fig. 5G-J).

4. Discussion

The identification of uterine corpus endometrial adenocarci-
noma immunotyping was focussed based on the TME. The
immune subtypes were thus identified regarding their potential
diagnostic, prognostic, and therapeutic implications. First,
the strong associations between various immune cell types
and clinicopathological grades were demonstrated, and then
six immune subtypes were identified based on the abundance
of immune cells and their interrelationships. The subtype
D had the highest ICI score and the lowest tumour purity,
while subtype E had the lowest score and the highest tumour
purity. Next, seven uterine corpus endometrial adenocar-
cinoma subtypes were identified based on differential gene
expression profiles of immune-derived subtypes. Several ICI
modulations into the TME were associated with genotyping
outcomes, however no significant differences were observed in
the survival of patients having different immune types. GSEA
enrichment analysis revealed that the high and low groups were
enriched in E2F-targets, G2M-checkpoint, mitotic spindle, and
MFY-targets-V1 pathways, where MAD2L1, EXO1, SMC4 and
KIF'15 genes showed aberrant expression.

There are limitations of this study. The conclusions are

based on sequencing data and bioinformatics analyses. Large-
scale clinical studies are warranted to validate these findings.
Previous studies have analysed high-risk uterine corpus en-
dometrial cancer by constructing models such as molecular
typing and genetic prognosis. Endometrial adenocarcinoma
is focused in this study. Most endometrial cancers are ade-
nocarcinoma. This research is thus targeted, accurate and
reliable. The uterine corpus endometrial adenocarcinoma is
classified according to the immune microenvironment which
demonstrate good predictive performance of immune-based
classification strategy. This can predict outcomes in high
risk patients of uterine corpus endometrial adenocarcinoma for
improved treatment strategies.

PCSK4, CDKN24, IHH, LRRC8D, CTSW and TNFRSF18
genes were selected for this study as per reported literature
[18-21]. Zheng et al. [22] found that MAD2L1 was related
to the prognosis of endometrial cancer patients through char-
acterising trunk characteristics of endometrial cancer based on
machine learning, and identifying prognostic sub pathways.
MAD2LI was thus highly expressed in endometrial cancer
tissues [22]. EXOI gene encoded an evolutionarily conserved
exonuclease [23], involved in genomic DNA metabolic pro-
cesses and had complex pathophysiological roles [24]. Its
mechanism in endometrial adenocarcinoma had not been re-
ported and remained unclear. Yang ef al. [25] showed that
SM(C4 silencing inhibited the endometrial adenocarcinoma cell
proliferation and promoted apoptosis by regulating Forkhead
box O1 (FoxOl1) activity. In a study on Non-SMC Con-
densin I Complex Subunit H (NVCAPH) role in endometrial
adenocarcinoma [26], the gene ensemble enrichment analysis
method identified mitotic spindle, G2M-checkpoint, MYC-
targets-V1, E2F targets, MY C-targets-V2, and Mechanistic
target of rapamycin complex 1 (mTORCI)-signalling as the
NCAPH upregulation pathways in endometrial cancer which
were consistent with our enrichment results of high and low
ICI score groups. There were differences in the IHH, LRRC8D
and PCSK4 expressions of high and low ICI score groups.

Several studies aimed at finding prognostic biomarkers
of endometrial adenocarcinoma followed by efficient
immunotherapy. A study developed a genetic signature
of six genes (CTSW, PCSK4, LRRCSD, TNFRSFI18, IHH
and CDKN2A) to prognose endometrial cancer using a
robust survival model [19]. Establishing a predictive risk
scoring system might provide new biomarkers for prognosing
endometrial adenocarcinoma. Moreover, understanding the
therapeutic targets of endometrial adenocarcinoma is vital.
Liu et al. [19] selected eight genes Zinc finger, SWIM-type
containing 1 (ZSWIMI), Nitrogen permease regulator-
like 3 (NPRL3), Golgi autoantigen, golgin subfamily a,
7 (GOLGA7), ST6 N-Acetylgalactosaminide Alpha-2,6-
Sialyltransferase 4 (ST6GALNACY), cell division cycle
16 homolog (CDCI6), Inositol-tetrakisphosphate [-kinase
(ITPK1), Proprotein Convertase Subtilisin/Kexin Type 4
(PCSK4) and Coronin 1B (CORO1B) by screening endometrial
cancer modules related to regulatory T (Treg) cells. A Tregs-
associated risk profile was developed and validated to assess
the endometrial cancer prognosis and reflect immune status
[27]. Further characterisation of the somatic mutation pattern
of endometrial adenocarcinoma immune subtypes showed
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that patients of high ICI scores had higher PTEN mutation
rates than patients of low ICI scores. Long-term molecular
observations revealed that PTEN inactivation was driving the
endometrial adenocarcinoma [28]. The somatic mutations
in PTEN were associated with PI3 kinase- Phosphatase and
Tensin Homolog-the serine/threonine kinase AK T-mammalian
target of rapamycin (PI3K-PTEN-Akt-mTOR) axis activation
and occurred in 69-80% endometrial tumours. This was
the most common genomic abnormality in endometrial
Therefore, PTEN mutations were an early event
in endometrial cancer pathogenesis as found by several in
vivo studies. A relatively large proportion of endometrial
hyperplasia and complex dysplasia cases harboured PTEN
mutations [29, 30]. The molecular aberrations in PI3K-PTEN-
Akt-mTOR signalling pathway [31] were known for PTEN
loss, and high expressions of PI3K and mTOR proteins were
associated with poor outcome in TNBC patients. PTEN
deletions were the major cause of reduced or absent PTEN
expression in Triple negative breast cancer (TNBC) [32].
Somatic mutations in catalytic (p110«) and regulatory (p85«)
subunits encoding PI3K were also common (40-56% and
20-43%, respectively), in addition to PTEN aberrations
[33]. Thus, the PI3K-PTEN-Akt-microsphere pathway was
a conducive therapeutic target for endometrial cancer. The
endometrial cancer classification was complicated. = The
immune aspects of endometrial cancer were analysed by
immuno-subtype and differential genotyping. It could be
speculated that patients with certain immune subtypes had
better response to immunotherapy. The high immune subtype
group had better prognosis to guide regarding the treatment
with certain clinical significance.

cancer.

In this study, immune subtypes of uterine corpus endome-
trial adenocarcinoma were explored based on the abundance
and microenvironment scores of immune cells infiltrating the
tumours. Their clinical features and prognostic significance
were evaluated. According to the differential analysis of
identified immune subtypes, uterine corpus endometrial ade-
nocarcinoma was further assessed based on stable genotypes
and relationships between signalling pathway profiles, clini-
cal characteristics, prognostic significance, and specific het-
erogeneity. Finally, the relationships between immunotype
groups, tumour mutational burden, and prognostic significance
were investigated. The study outcomes provide an experimen-
tal framework for future immunotherapies of uterine corpus
endometrial adenocarcinoma.

The prognosis of high-risk uterine corpus endometrial ade-
nocarcinoma remains poor because of inefficient treatment
strategies including conventional surgery, radiotherapy, and
chemotherapy. Previous studies have shown many immune
cells and cytokines infiltrating the uterine corpus endometrial
adenocarcinoma microenvironment [26]. Therefore, the im-
munological classification and prognostic markers of uterine
corpus endometrial adenocarcinoma are important for improv-
ing prognosis, clinical diagnosis, and treatment. Based on this
study, the relationship between immunophenotyping and en-
dometrial cancer immunotherapy can be explored for helping
patients in their treatments.
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5. Conclusions

Memory B cell, Type 2 T helper cell, Effector memory CD4 T
cell, Eosinophil, Type 17 T helper cell, and Activated CD4 T
cell were correlated with the pathological grade of endometrial
adenocarcinoma (p < 0.0001). Six uterine corpus endometrial
adenocarcinoma immune subtypes were identified based on
immune cells abundance and their interrelationships. ICI score
of D subtype was the highest and tumour purity as the lowest,
while E subtype had the lowest score and the highest tumour
purity. Seven uterine corpus endometrial adenocarcinoma sub-
types were identified based on the differential gene expression
profiles between the immune subtypes. GSEA enrichment
analysis found the current high and low groups being enriched
in the E2F target, G2M checkpoint, mitotic spindle and MFY
target V1 pathway, where MAD2L1, EXOI, SMC4 and KIF15
genes were abnormally expressed. Further characterization
of somatic mutation patterns of uterine corpus endometrial
adenocarcinoma immune subtype depicted that PTEN muta-
tion rates were higher in patients of high ICI scores than with
low ICI scores. There were differences in /[HH, LRRC8D
and PCSK4 expressions of high and low ICI scoring groups.
In recent years, studies have aimed to discover prognostic
biomarkers of uterine corpus endometrial adenocarcinoma for
prognosis and efficient immunotherapy. High-risk uterine cor-
pus endometrial adenocarcinoma had been analyzed through
building models. In this study, uterine corpus endometrial
adenocarcinoma was classified based on immune microenvi-
ronment which demonstrated good predictive performance for
the developed immune-based classification strategy. The study
outcomes can improve treatment strategies for patients at high
risk of uterine corpus endometrial adenocarcinoma.

ABBREVIATIONS

TCGA: The Cancer Genome Atlas Program; TME: tumour
microenvironment;  sSGSEA: single-sample Gene Set
Enrichment Analysis; KEGG: Kyoto Encyclopaedia of
Genes and Genomes; TMB: Tumour mutation burden;
TIC: tumour-infiltrating immune cell; ICI: Immune cell
infiltration; CD: cluster of differentiation; MDSC: myeloid-
derived suppressor cells; PCSK4: Proprotein Convertase
Subtilisin/Kexin Type 4; CDKN2A: Cyclin dependent
kinase inhibitor 2A; IHH: Indian hedgehog homolog;
LRRCS8D: Leucine Rich Repeat Containing 8§ VRAC Subunit
D; CTSW: Cathepsin W; TNFRSF18: TNF Receptor
Superfamily Member 18; DEPDC1: DEP Domain Containing
1; DIAPH3: Diaphanous Related Formin 3; MAP2LI:
microtubule associated protein-2; EXOI1: Exonuclease 1;
SMC4: Structural Maintenance Of Chromosomes 4; KIF15:
Kinesin Family Member 15; n.s.: not significant; FoxO1:
Forkhead box O1; NCAPH: Non-SMC Condensin I Complex
Subunit H; ZSWIM1: Zinc finger, SWIM-type containing
1; NPRL3: Nitrogen permease regulator-like 3; GOLGAT:
Golgi autoantigen, golgin subfamily a, 7, STOGALNAC4:
ST6 N-Acetylgalactosaminide Alpha-2,6-Sialyltransferase 4;
CDCI16: cell division cycle 16 homolog; ITPKI1: Inositol-
tetrakisphosphate 1-kinase; PCSK4: Proprotein Convertase
Subtilisin/Kexin Type 4; CORO1B: Coronin 1B.
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