
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).
Eur. J. Gynaecol. Oncol. 2023 vol.44(5), 26-?? ©2023 The Author(s). Published by MRE Press. www.ejgo.net

Submitted: 01 December, 2022 Accepted: 14 February, 2023 Published: 15 October, 2023 DOI:10.22514/ejgo.2023.076

OR I G INA L R E S E A R CH

BRD4 inhibitor JQ1 may affect the prognosis of cervical
cancer through super-enhancer-related genes
Yuxi Lin1,†, Bifen Huang2,†, Fangjie He3,4,*, Jianqing Zheng1,5,*

1The Second Clinical Medical College of
Fujian Medical University, The Second
Affiliated Hospital of Fujian Medical
University, 362000 Quanzhou, Fujian,
China
2Department of Obstetrics and
Gynecology, Quanzhou Medical College
People’s Hospital Affiliated, 362000
Quanzhou, Fujian, China
3Department of Obstetrics and
Gynecology, The First People’s Hospital
of Foshan, 528000 Foshan, Guangdong,
China
4Department of Gynecology, Fujian
Maternity and Child Health Hospital,
College of Clinical Medicine for
Obstetrics & Gynecology and Pediatrics,
Fujian Medical University, 350000
Fuzhou, Fujian, China
5Department of Radiation Oncology,
The Second Affiliated Hospital of Fujian
Medical University, 362000 Quanzhou,
Fujian, China

*Correspondence
shmilyhbf@fjmu.edu.cn
(Jianqing Zheng);
hfj5362@fsyyy.com
(Fangjie He)

† These authors contributed equally.

Abstract
To explore the effects of bromine domain protein 4 (BRD4) inhibitor JQ1 on the
expression profile of super-enhancer-related genes (SE-genes) in cervical cancer (CC)
HeLa cells and construct a prognosis model to explore the potential impact of JQ1 on
the prognosis of CC. Whole transcriptome sequencing technology was used to detect
changes in the gene expression profiles of JQ1-treated and control cells. Differentially
expressed SE-genes were identified by matching via the dbCoRC database and Cistrome
Data Browser (Cistrome DB). The prognosis of differentially expressed SE-genes was
analyzed in the Cancer Genome Atlas (TCGA) dataset based on gene expression status.
The Cox proportional risk model and least absolute shrinkage and selection operator
(LASSO) regression were used to construct the prognostic model. A total of 1161 SE-
genes were identified from dbCoRC and Cistrome DB, among which 1004 SE-genes
were successfully matched to the expression profiles of JQ1 transcriptome sequencing.
Differential expression analysis identified 110 differentially expressed SE-genes, among
which 72 were down-regulated and 38 were upregulated. Then, a 9 SE-gene prognostic
model was constructed, and Kaplan-Meier (K-M) curves showed that the high-risk group
had significantly poorer clinical survival outcomes (p< 0.05). Time-dependent receiver
operating characteristic (ROC) curves showed that the 1-year, 2-year and 3-year survival
estimation of the proposed model was 0.82, 0.86 and 0.87, respectively, demonstrating
excellent performance. JQ1 significantly impacts the SE-genes expression profile of
HeLa cells, and the proposed model based on 9 differentially expressed SE-genes may
effectively predict the survival outcomes of CC patients. As this study was based on
exploratory analysis, further prospective studies are needed to verify the effectiveness
of the SE-genes-based prognostic model.
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1. Introduction

Cervical cancer (CC) is one of the most common types of
malignant tumors in women worldwide [? ] and is ranked first
as the highest incidence cancer in women in China [? ]. Al-
though surgery or concurrent radiotherapy can cure more than
60–70% of CC patients, the potential for cancer recurrence
and distant metastases still poses a significant threat to patient
survival [? ]. The heterogeneity of this disease results in
different survival outcomes in CC patients receiving standard
therapy, such as radical surgery or concurrent radiotherapy [?
]. Despite achieving long-term survival in more than 70% of
patients, the disease remains a major clinical challenge, with
approximately 25–30% of patients experiencing tumor recur-
rence or distant metastasis. In addition, despite chemotherapy
and immunotherapy being important treatments for advanced-
stage CC, they cannot cure recurrent or metastatic CC [? ].

Therefore, there is an urgent need to identify pharmacological
agents and individualized novel prognostic and risk-stratified
biomarkers to improve the outcomes of these patients [? ].

Tumor heterogeneity is often associated with differences
in gene expression. Super-enhancers (SEs) are a type of
regulatory domain that exhibit unusually strong transcription-
assisted activator binding capabilities [? ? ]. Compared to
typical enhancers (TEs), SEs have a stronger ability to promote
transcription, which is more common in tumor cells where SEs
act as oncogenes to recruit enhancer-binding proteins to drive
gene expression [? ]. When SEs exert biological functions
via target genes, they are termed SE-associated genes (SESGs)
or SE-related genes (SE-genes) [? ]. Although a growing
number of studies have shown that the presence of SE-genes
can significantly affect the survival of various types of cancers
[? ? ], few have investigated their impact on the prognosis of
CC patients.

https://www.ejgo.net/
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Bromodomain and extra-terminal protein family (BET) is
a new class of transcriptional regulatory proteins that can
recognize and bind to acetylated lysine residues on histones
to recruit transcriptional activators for chromatin acetylation
[? ]. Acetylated chromatin can facilitate transcriptional acti-
vation and promote tumorigenesis, and blocking this biological
process could inhibit tumor growth and promote the apoptosis
of cancer cells [? ? ]. Novel BET inhibitors have been reported
to exert anti-tumor effects in various tumors by specifically
binding to their BET domain in in vitro experiments [? ? ? ].
Additionally, previous in vivo and in vitro studies have shown
that SEs inhibitors (JQ1), a specific inhibitor of bromodomain-
containing protein 4 (BRD4), can suppress the expression of
important target genes by inhibiting the biological function
of SEs in cancer [? ? ]. However, it is unclear whether
JQ1 has anti-tumor effects and whether JQ1 can influence the
expression of SE-genes.
In this study, we explored the mechanism of JQ1 in CC by

conducting high-throughput transcriptome sequencing in JQ1-
treated HeLa cells to investigate the changes in the expression
profile of SE-genes. Further, since the least absolute shrinkage
and selection operator (LASSO) penalized Cox regression is
most commonly used for factor screening of prognostic mod-
els [? ], this methodology was implemented to construct a
prognostic model for CC patients based on 1004 SE-related
genes. Also, a gene cluster containing 9 SE-genes (TP53I3,
ADCY7, NQO2, CCDC102A, ADM, SYTL3, PSCA, NPR1 and
BAIAP2) was screened, and a risk score model based on these
9 genes was constructed to predict the overall survival (OS) of
CC patients. The workflow of the present study is shown in
Fig. ??.

2. Materials and methods

2.1 Cell culture, CCK-8 cell proliferation
assay and cDNA library construction and
sequencing
Cell Counting Kit-8 (CCK-8) assay was used to assess the
cell viability of CC HeLa cells, verify the inhibitory effects
of JQ1 and calculate the optimal inhibitory concentration.
Details of HeLa cell culture, CCK-8 cell proliferation assay
and cDNA library construction and sequencing are shown in
Supplementary material.

2.2 Data source
The microarray data and corresponding clinical information
for CC were obtained from the cancer genome atlas database
(TCGA, https://cancergenome.nih.gov/). A total of 306 cer-
vical cancer tissue samples and 3 paracervical tissue samples
were obtained. The basic clinical information, treatment status
and prognosis data were retrieved.

2.3 Identification and differential
expression analysis (DEA) of
super-enhancers related genes
A list of SE-genes was identified from the dbCoRC database
and Cistrome Data Browser (Cistrome DB) [? ? ]. The

detailed SE and SE-genes associated with CC are listed in Sup-
plementary Table 1 and Supplementary Table 2. The SE-
genes dataset was extracted from the JQ1-treated and control
expression matrices from our full transcriptome sequencing
data, and DEA was performed using the limma package, with
the absolute value of Log2 fold change >1 and corrected p <

0.05 as thresholds for screening differentially expressed genes
(DEGs). Differentially expressed SE-genes were extracted for
heat map plotting, volcano mapping and various visualizations
using the R packages “ggplot2” and “ggtree”.

2.4 Functional annotation and pathway
enrichment analysis (FAPEA) of differentially
expressed SE-genes
Gene Ontology (GO) functional enrichment analysis and Ky-
oto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment were performed to identify DEGs using the R
package clusterProfiler. Significant pathways were identified
based on a p value of < 0.05.

2.5 Construction of protein-protein
interaction (PPI) network and screening of
the core SE-genes
The interaction network of SE-genes targets was built using the
STRING database (version 11.0, http://string-db.org/), and the
interaction network of core targets was constructed using the
Cytoscape software (version 3.9.1). In the built PPI network,
the size and color of nodes reflected the degree value, while
the thickness of edges reflected the comprehensive score. The
core targeted gene sets were re-screened using the Cytoscape
plug-inMCODE (molecular complex detection). Each module
was ranked according to the results ofMCODE analysis, which
were identified as the core targets and enriched for GO function
and KEGG pathways using the R package “clusterProfiler”.

2.6 Construction and evaluation of a
prognostic model based on differentially
expressed SE-genes
Microarray data and corresponding clinical information from
the TCGA database were used for prognostic analysis. Dif-
ferentially expressed SE-genes were grouped into a high- or a
low-expressed group according to the median value of gene
expression. To identify significant and potential prognostic
genes, LASSO penalized Cox regression analysis was per-
formed using the R package “glmnet” to build predictive mod-
els. The optimal lambda (λ) value was identified based on ten-
fold cross-validation. The LASSO models were constructed
using two best-fit values (λmin and λ1se) calculated by mini-
mizing the mean cross-validated error. Then, time-dependent
ROC curve analysis was performed to evaluate the perfor-
mance of the prognostic model.
To obtain an optimal prognostic model, we integrated the

expression levels of candidate genes according to the forum
RiskScore = βi ×Xi , where Xi is a dichotomous variable,
with 0 representing a low expression of genes and 1 repre-
senting a high expression, and βi is the regression coefficient
for each candidate gene. The risk score for each patient was

https://cancergenome.nih.gov/
http://string-db.org/
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FIGURE 1. Flow chart of the study design. SE: super-enhancers; DEA: differential expression analysis; Cistrome DB:
Cistrome Data Browser; LASSO: least absolute shrinkage and selection operator; TCGA: The Cancer Genome Atlas.

calculated by weighting the regression coefficients. The best
cut-off point was obtained from the maximum standardized
long-term statistics, and patients were divided into high-risk
and low-risk groups using this best cut-off point.
The prognostic value of the candidate genes was obtained

through univariate and multivariate Cox proportional hazard
regression models constructed using the R packages “survival”
and “survimer”. The calculation results are displayed in the
form of forest plots. We further screened other important
clinical characteristics to construct a multivariate prognostic
model and verify the independence of the constructed prognos-
tic models. The parameters for multivariate prognostic models
included the prognostic risk group factor and clinical factors
such as age, race, grade, clinical stage, survival with tumor,
lymphovascular space invasion, parametrial invasion and uter-
ine involvement. Hazard ratio (HR) with its corresponding
95% confidence interval (CI) and p-value of each factor were
determined. Lastly, the survival ROC package was used to
plot the 1-, 2- and 3-year overall survival ROC curves of CC
samples.

2.7 Statistical analysis
The results of the CCK-8 cell proliferation assay are expressed
as mean ± standard deviation (x̄ ± s) and analyzed using
GraphPad Prism version 8.0 (GraphPad Software, San Diego,
CA, U.S.A.). One-way ANOVA (Analysis of Variance) or
independent samples t-test was used for data analysis.
Bioinformatics analysis and survival analysis were

performed using the corresponding R packages on the R
platform (version 4.2.0). Gene symbols were annotated using
the “BiomaRt” package, and DEAs was implemented using
the limma package. A two-sided p < 0.05 was considered for
determining statistical significance.

3. Results

3.1 The cell proliferation inhibition rate of
JQ1 on HeLa cells via CCK-8 assay
The results of the CCK-8 assay showed that the survival rate
of HeLa cells decreased with an increase in JQ1 concentration
and prolongation of exposure time (Fig. ?? and Table ??). As
the semi-inhibitory concentration (IC50) of JQ1 on HeLa cells
at 72 h was 1.04 µmol/L under the different concentrations and
exposure time, we used 1 µmol/L of JQ1 for 72 h to treat HeLa
cells before whole transcriptome resequencing.

3.2 Screening and differential expression
analysis of SE-genes
A 16 primary HeLa cell-related SEs list was downloaded
from the dbCoRC website, and a total of 1161 SE-genes were
identified from Cistrome DB via the SEs list. The detailed
gene list of HeLa cell-related SEs and SE-genes are shown in
Fig. ??, Supplementary Table 1 and Supplementary Table 2.
Our transcriptome sequencing results revealed a 13,439 gene
matrix in HeLa cells with or without JQ1 treatment. A 1004
SE-related gene matrix for HeLa was obtained by overlapping
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FIGURE 2. The cell proliferation inhibition rate of JQ1 on HeLa cell via CCK-8 assay. DMSO: dimethyl sulfoxide.

TABLE 1. The effect of JQ1 on the proliferation of HeLa cells under different concentrations and at different times.
Groups 24 h 48 h 72 h 120 h
DMSO −0.02 ± 2.58 0.17 ± 4.36 −0.02 ± 1.75 0.00 ± 2.58
0.01 µmol/L 5.23 ± 1.88 12.33 ± 1.86 12.20 ± 2.30 20.17 ± 1.88
0.1 µmol/L 23.77 ± 2.13 21.00 ± 2.97 20.58 ± 4.27 60.33 ± 2.13
1 µmol/L 29.82 ± 1.69 30.00 ± 2.00 50.22 ± 1.47 60.17 ± 1.69
p <0.001 <0.001 <0.001 <0.001
DMSO: dimethyl sulfoxide.

FIGURE 3. Network diagram of HeLa cell-related super-enhancers.
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the above two gene sets. Using FDR (false discovery rate)
<0.05 and LogFC >1 as the difference condition, DEA with
limma package revealed 110 SE-genes that were differentially
expressed, among which 72 genes were downregulated and 38
were upregulated (Fig. ?? and Supplementary Table 3).

3.3 FAPEA results of differentially expressed
SE-genes
The 110 SE-genes were included in FAPEA using the R pack-
age clusterProfiler, and the results of the top 15 pathways for
each enrichment analysis are shown in Fig. ?? and Supple-
mentary Table 4. The top 5 enrichment pathways for DMSO
biological processes (BP) were positively associated with the
regulation of protein binding, dopaminergic neuron differenti-
ation and regulation of cell shape as well as cyclic nucleotide
metabolic process and body morphogenesis. The top 5 enrich-
ment pathways of GO molecular function (MF) were serine-
type endopeptidase inhibitor activity, calcium-dependent pro-
tein binding, enzyme inhibitor activity, structural constituent
of muscle and phospholipase inhibitor activity. The top 5
enrichment pathways of GO cellular component (CC) were
collagen-containing extracellular matrix, cell cortex, intersti-
tial matrix, basement membrane, laminin complex. The top
5 enrichment pathways of KEGG were regulation of lipolysis
in adipocytes, ECM (extracellular matrix)-receptor interaction,
amoebiasis, longevity regulating pathway—multiple species,
and focal adhesion.

3.4 PPI protein network construction and
core module screening of differentially
expressed SE-genes
The PPI network of candidate genes was established using
the STRING database, and the corresponding node data were
imported into the Cytoscape software for subsequent analysis.
The PPI map is shown in Fig. ??. The core modules in the
PPI network were identified using the MCODE plug-in, and
the top 3 modules are shown in Fig. ??. The core module 1
contained 3 genes, namely LAMC2, LAMB3 and DAG1. The
core module 2 contained 3 genes, namely TIAM1, BAIAP2 and
RHOD. The core module 3 contained 3 genes, namely ADCY7,
GNAL and PDE4A.

3.5 Development of the prognostic
signature for SE-genes
All of the 110 differentially expressed SE-genes were suc-
cessfully matched with the TCGA database. The constructed
prognostic expression matrix is displayed in Supplementary
Table 5. Then, all these SE-genes were used to construct a
prognostic signature. The Univariate COX analysis results of
19 significant SE-genes are listed in Table ??.
Next, LASSO regression was performed on the 19 signif-

icant SE-genes from univariate COX analysis to screen for
candidate genes. The detailed process of LASSO regression
and related figures are shown in Fig. ??A,B. Using λmin =
0.014, 18 SE-genes were selected, while 10 SE-genes were
selected with λ1se = 0.055. So, we further studied the 18-gene
model.

Subsequently, a multivariate Cox regression analysis us-
ing stepwise regression was utilized to identify which candi-
date genes were independently associated with overall survival
(OS). Ten genes were excluded due to potential collinear-
ity. Multivariate Cox regression analysis identified TP53I3,
ADCY7, NQO2, CCDC102A, ADM, SYTL3, PSCA and BA-
IAP2 as being independently associated with OS, while NPR1
had no significant impact on OS (Table ??). Using an optimal
cut-off value of 3.06, 265 patients with cervical cancer were
divided into a high-risk and a low-risk group. Kaplan-Meier
survival analysis showed that the survival of patients could
be stratified into different risk groups using the 9-gene model
(p < 0.05) (Fig. ??A). In addition, as shown in Fig. ??B, the
prognosis scores of the different risk groups were significantly
different (p < 0.001). The performance of the model was
assessed using the time-dependent receiver operating charac-
teristic (ROC) curves, which showed a value of 0.82, 0.86 and
0.87 for 1-, 2- and 3-year OS, respectively (Fig. ??C).
Considering the potential impact of clinical factors such as

age, clinical stage, survival with tumor and pathological type,
we validated the independence of the multi-SE-genes prog-
nostic model using univariate and multivariate Cox regression
analyses. In the univariate Cox regression analysis, the risk
score of CC patients was related to OS (HR = 7.751, 95%
CI = 4.308–13.946, p < 0.001) (Fig. ??C). Other important
univariate prognostic factors included survival with tumor and
clinical stage, both of which demonstrated adverse effects
on survival. Subsequently, we used these three prognostic
variables to construct a multivariate COX prognostic model.
Multivariate COX analysis combined risk score showed that
CC patients with higher clinical stage, survival with tumor and
the high-risk group had a poorer survival (p< 0.05) (Fig. ??D).
Further, the expression levels of ADCY7, CCDC102A, ADM

and SYTL3 were significantly different between the high-risk
and low-risk groups (P < 0.05), while the expression levels
of BAIAP2, NPR1, NQO2, PSCA and TP43I3 were similar
between the two groups (Fig. ??). Among the genes with
significant differential expression, ADCY7 and CCDC102A
showed high expression in the high-risk group and were im-
portant poor prognostic factors. K-M survival analysis showed
that except for NPR1, the expression status of the other 8 SE-
genes significantly impacted the prognosis of cervical cancer
patients (Fig. ??).

4. Discussion

Many studies have reported the involvement of SEs in the
growth of malignant tumors and found that they are one of
the most important regulatory factors [? ? ]. However, these
mechanisms remain to be explored [? ]. Although targeting the
regulation of SEs might be considered a potential therapeutic
strategy for cancer treatment, selecting appropriate anti-cancer
drugs remains challenging [? ]. More and more studies have
shown that JQ1 can play an anti-tumor role by interfering with
the transcriptional level of the SEs [? ]. In this present study,
we first verified that JQ1 had a significant inhibitory effect
on CC HeLa cells through CCK-8 cell proliferation assay,
which was concordant with the results of previous studies in
other tumors [? ? ? ? ]. Subsequently, we used full
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FIGURE 4. Screening and differential expression analysis of SE-genes, illustrated by (A) Heatmap, (B) Volcano map.

F IGURE 5. Functional annotation and pathway enrichment analysis (FAPEA) of differentially expressed SE-genes. (A)
GO biological process enrichment, (B) GO cellular component enrichment, (C) GO molecular function enrichment, (D) KEGG
pathway enrichment. GO: Gene Ontology; BP: biological process; CC: cellular component; MF: molecular function; KEGG:
Kyoto Encyclopedia of Genes and Genomes.
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FIGURE 6. PPI protein network of differentially expressedmRNAs. (A) Protein-protein interaction network fromSTRING,
(B) Protein-protein interaction network from Cytoscape.

FIGURE 7. Core modules in the PPI network determined by MCODE analysis. (A) Core module 1, (B) Core module 2,
(C) Core module 3.
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TABLE 2. Univariate COX analysis results of significant SE-genes.
SE-genes HR HR.95L HR.95H p value
PDK2 0.558 0.330 0.943 0.029
ISOC2 0.551 0.326 0.931 0.026
RASSF2 0.565 0.329 0.970 0.038
PON2 1.798 1.064 3.039 0.028
KAZALD1 0.580 0.339 0.991 0.046
ABHD14B 0.437 0.255 0.751 0.003
TP53I3 2.389 1.399 4.078 0.001
ADCY7 2.042 1.182 3.530 0.011
NQO2 0.400 0.235 0.680 0.001
CCDC102A 1.922 1.140 3.240 0.014
ADM 2.153 1.235 3.754 0.007
SYTL3 0.452 0.265 0.772 0.004
PSCA 0.488 0.286 0.833 0.009
NPR1 0.585 0.346 0.989 0.045
LIMS1 1.724 1.024 2.903 0.041
RHOD 1.998 1.164 3.428 0.012
BAIAP2 0.576 0.342 0.971 0.038
NQO1 0.589 0.349 0.994 0.048
ANXA2 2.063 1.223 3.480 0.007
Note: HR.95L: lower limit of 95% confidence interval; HR.95H: upper limit of 95% confidence interval.

TABLE 3. Multivariate COX analysis results of 9 SE-genes.
SE-genes b se HR HR.95L HR.95H p value
TP53I3 1.533 0.328 4.632 2.437 8.803 <0.001
ADCY7 0.826 0.318 2.284 1.225 4.260 0.009
NQO2 −0.836 0.296 0.434 0.243 0.774 0.005
CCDC102A 0.607 0.303 1.835 1.014 3.323 0.045
ADM 1.086 0.331 2.963 1.548 5.673 0.001
SYTL3 −1.359 0.297 0.257 0.144 0.460 <0.001
PSCA −0.738 0.322 0.478 0.254 0.899 0.022
NPR1 −0.474 0.283 0.622 0.357 1.084 0.094
BAIAP2 −1.152 0.308 0.316 0.173 0.577 <0.001
Note: b: regression coefficient; se: standard error of regression coefficient; HR.95L: lower limit of 95% confidence interval;
HR.95H: upper limit of 95% confidence interval.

FIGURE 8. LASSO penalized Cox regression analysis results with (A) regression coefficient plot, (B) regression
parameters plot, and (C) time-dependent ROC curve plot. LASSO: least absolute shrinkage and selection operator.
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FIGURE 9. Prognostic value of Riskscore from the prognostic model via SE-genes with (A) Kaplan-Meier Survival
Curve, (B) Univariate COX analysis combined with clinical data, (C) Multivariate COX analysis combined with clinical
stage. PMpositive: Parametrial invasion positive; LVSI: lymph-vascular space invasion; UteriInvol: Uterine invasion.



35

FIGURE 10. Differential expression analysis of important SE-genes included in the prognostic model.

transcriptome sequencing to explore the gene expression level
of HeLa cells with or without JQ1 treatment. As expected, we
found that JQ1 changed the gene expression profile of HeLa
cells, and some of these genes were identified as SE-related
genes. Currently, the dbCoRC and Cistrome DB databases
are mainly used to identify SE-related genes. Although some
genes were found to play a prognostic role in other malignant
tumors, the functions of most of these genes are yet to be
clarified [? ]. In this present study, we identified 110 SE-genes
that were differentially expressed between HeLa cells treated
with or without JQ1, of which 72 were downregulated and 38
were upregulated. Investigations at the transcriptional level
showed that JQ1 might exhibit anti-tumor functions through
SE-related genes.

Next, we performed functional annotation and pathway
enrichment analysis on the identified DEGs. KEGG pathway
enrichment analysis revealed that candidate genes were
mainly enriched in the regulation of lipolysis in adipocytes,
ECM-receptor interaction, amoebiasis, longevity regulating
pathway—multiple species, focal adhesion and other
pathways. These pathways were related to immune response,
amino acid metabolism, cell proliferation, protein transport
and other physiological and biochemical reactions. Hub
genes, including LAMC2, LAMB3, DAG1, TIAM1, BAIAP2,
RHOD, ADCY7, GNAL and PDE4A, were identified through
PPI network analysis and MCODE analysis. Two hub genes,
namely ADCY7 and BAIAP2, were included in our proposed
9-gene prognostic model, in which high expression of ADCY7
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FIGURE 11. Survival curves of SE-genes of interest.

was associated with poor prognosis and high expression of
BAIAP2 was associated with better prognosis.

Lastly, we proposed a risk-score formula by constructing a
signature using the 9 SE-associated genes specific for CC. We
found that of the 9 genes included in the model, only one gene
(NPR1) was not independently associated with survival, while
the other 8 genes had excellent performance in the prognosis
model, which also demonstrated important predictive values
in separate K-M survival analysis. The performance of the
model was determined via time-dependent ROC curves, which
showed that the 1-, 2- and 3-year OS was associated with
a value of 0.82, 0.86 and 0.87, respectively, suggesting that
the model had feasible and creditable prognostic prediction
abilities.

Previous studies reported that JQ1 had a significant in-
hibitory effect on the proliferation of cancer cells, and this
inhibitory effect was time- and concentration-dependent [?
? ]. In our exploratory experiment, we also found that the
inhibition of JQ1 on HeLa cells was time- and concentration-
dependent. Existing literature showed that JQ1 significantly
inhibited various malignant tumor cells of different genetic
backgrounds [? ? ]. To the best of our current knowledge,

only few studies have explored the anti-cancer mechanism of
JQ1 in CC [? ? ]. To understand the anti-tumor mechanism of
JQ1 in cervical cancer, we designed the present experiment to
explain the potential mechanism at the gene expression level.

SEs represent a large cluster of active enhancers essential
to maintain cell identity and drive the expression of some
oncogenes in different cancers [? ]. The activation of SEs
suggests that the functions of some of these oncogenes could
be strongly regulated, including lncRNAs, miRNAs and mR-
NAs. The differential expression of mRNAs ultimately de-
termines the biological characteristics of cancer cells, such as
stronger proliferation or inhibition of apoptosis [? ], which
can be considered as the functional executors of SE [? ].
Consequently, our research focused on SE-related genes that
belong to mRNAs. By matching SE, we obtained 110 SE-
genes differentially expressed in the Cistrome DB database.
In this current study, LASSO penalized Cox regression and
univariate and multivariate Cox regression analyses were uti-
lized to narrow the range of the candidate genes. Then, we
successfully established a 9-gene risk score model for survival
prediction, comprising TP53I3, ADCY7, NQO2, CCDC102A,
ADM, SYTL3, PSCA, BAIAP2 and NPR1. We found that
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ADCY7 andCCDC102Awere highly expressed in the high-risk
group, indicating that the two genes were associated with poor
prognosis of CC patients. On the other hand, ADM and SYTL3
genes showed low expression in the high-risk group, where
the high expression of SYTL3 was beneficial to the prognosis
of CC patients.
Our research also focused on the inhibitory effects of JQ1 on

CC HeLa cells and obtained the differential gene expression
profile of JQ1 through transcriptional sequencing, based on
which we identified SE-related genes and constructed a 9-
gene prognosis model. Our research showed that altered SE-
related genes play an important prognostic role in cervical
cancer patients, which has important clinical significance in
predicting the prognosis of CC patients. However, despite the
clinical significance of our results, there were some limitations
associated with our research. First, the development and
progression of cancer are regulated by a series of gene sets,
and the mechanism is complex and extensive, while in this
study, we only focused on SE-related regulation, as we believe
it is crucial in CC. Second, due to the limitations of direct
exploration of SEs in research, it might be more convenient
to explore the biological functions of SEs by taking the target
genes of SEs as the entry point. However, this means that the
relevant mechanism interpretation would be indirect, requiring
further verification and discussion. Lastly, although some
SE-genes were found to be associated with the prognosis of
CC, their exact biological role in CC remains unclear. The
functions of these genes should be further investigated in in
vitro and in vivo settings.

5. Conclusions

In conclusion, our findings indicated that JQ1 significantly
suppressed the proliferation of CC HeLa cells. JQ1 likely
exerts its anti-tumor effects by modifying the transcriptional
activity of SEs and influencing the expression of SE-related
genes. By analyzing differently expressed SE-genes induced
by JQ1, we constructed a 9-gene prognostic model that showed
promising abilities to independently predict the survival of CC
patients. Additionally, TP53I3, ADCY7, NQO2, CCDC102A,
ADM, SYTL3, PSCA, BAIAP2 and NPR1 were identified as
potential SE-associated genes in CC andmay play crucial roles
in the development and progression of this cancer.
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