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Abstract
The COVID-19 pandemic has killed more than 6.8 million people worldwide since
late 2019. A hyperinflammatory condition depending on interleukin-6 (IL-6) rise
and hypercytokinemia have been linked with fatality rates. This condition can
lead to lymphocyte-deficiency. Lymphopenia came up as a major prognosticator of
severe infection cases. Cancer therapies can induce lymphopenia due to reservoir
lymphoid organ damage. The principal cause of hematologic toxicity (HT) is usually
chemotherapy (ChT). Nonetheless, also radiotherapy contributes to hematologic cell
lines impairment, impacting mainly on lymphocytes. Radiation-induced lymphopenia
(RIL) has been linked to unfavorable outcomes in various solid tumors. In pelvic
cancers, bone marrow (BM) dose-volume metrics have been related to HT occurrence,
particularly Gynaecological Cancers. The present times offer an unprecedented
opportunity to broadly embrace treatment strategies, as BM sparing (BMS), that avoid
reservoir lymphoid organs’ suppression and the potential subsequent RIL.
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1. COVID-19, lymphopenia and cancer
care

The COVID-19 pandemic has killed more than 6.8 million
people worldwide since late 2019 [1].
During the outbreak, accumulating evidence suggested that

a subgroup of patients with severe disease developed a cy-
tokine storm syndrome linked to an increased mortality rate
[2].
This hyperinflammatory state may lead to lymphocyte de-

ficiency through apoptosis, IL-6 and other pro-inflammatory
cytokines levels rise [3, 4]. Of interest, lymphocyte death
can be caused by direct lymphocytes infection by the virus.
Furthermore, the virus may directly enter lymphocytes by
angiotensin-converting enzyme 2 (ACE2) receptors, possibly
resulting in lymphatic organs’ attack [3]. Low lymphocyte
count emerged as a significant predictor of gravity in COVID-
19 patients [3]. Lymphopenia, indeed, has been correlated to a
three-fold increase in severity of COVID-19, with a significant
lower lymphocyte count observed in critical infections than in
non-critical ones [4, 5].
Cancer treatments commonly lead to lymphopenia as

a side effect and can influence its incidence and severity
[6]. Chemotherapy (ChT) is considered the main cause of
hematologic toxicity (HT) [7]. Radiotherapy (RT) has its
impact on hematologic cell lines’ impairment, through a
well-documented and extensively described reduction of
lymphocytes count [7]. Lymphocytes are notably the most

radiosensitive cells within the hematopoietic system, with
only 1.5 Gy considered to be the lethal dose required to
reduce the surviving fraction of lymphocytes by 50% (LD50)
[8, 9]. The interplay between RT and immunomodulation
has been investigated by several pre-clinical and clinical
studies. Lymphocytes have a pivotal role in the anti-neoplastic
immunity. Furthermore, lymphopenia has been linked to an
increased risk of opportunistic infections, poorer oncologic
outcomes and decreased survival in several cancer types [6, 7].
In this regard, non-negligible HT and lymphopenia rates

are observed in gynaecological cancer patients undergoing
combined modality treatments with RT and ChT [7].
Thus, during the present Pandemic, clinicians involved in

the gynaecological cancer arena should adopt specific treat-
ment strategies to pursue the cure and simultaneously limit the
COVID infection- risk.

2. Radiotherapy and lymphopenia, the
biological underpinnings

Ionizing radiation has a crucial role in immune-regulation
and cancer progression, as it upregulates Fas ligand (FasL), a
ligand involved in the lymphocyte’s apoptosis pathway. FasL
upregulation has been linked to disease progression in solid
tumors [10–12]. Furthermore, increased FasL level within
the bone marrow stem-cells has been observed to impair lym-
phocyte function [10, 13]. RT can also lead to increased IL-
6 serum levels, which can decrease lymphocytes levels [14–
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16]. IL-6 also plays a role in tumorigenesis, and can favor
tumor progression. Indeed, the Janus kinase (JAK)/signal
transducer and activator of transcription 3 (STAT3) signaling
hyperactivation is observed in different types of tumors and it
is associated with worse outcomes [14–18]. An aberrant IL-
6/JAK/STAT3 signaling pathway activation has been observed
to influence tumor growth by either driving tumor cell prolifer-
ation or suppressing the antitumor response [17]. In addition,
STAT3 signaling hyperactivation has been related to both ChT
and RT resistance [19]. Thus, radiation-induced FasL upregu-
lation and the pro-inflammatory cytokines increase, through
lymphopenia, may enhance cancer progression. Therefore,
targeting IL-6 may help enhancing tumor control [14–16].
Tocilizumab, a monoclonal anybody blocking IL-6 activity,
may theoretically be efficient in limiting tumor progression
[17]. Thereupon, some authors are currently investigating the
potential benefit of a synergic effect of tocilizumab in addition
to RT on improving treatment response and patients’ survival
in different solid cancers treatment scenarios [19–22].

3. Radiation-induced lymphopenia in
gynaecological malignancies

Radiation induced lymphopenia (RIL) has been observed to
worsen prognosis in different solid tumors, including non-
small cell lung cancer (NSCLC), glioblastoma, pancreatic,
esophageal, head and neck and pelvic cancers [7, 23].
The risk of RIL has been associated with unintentional dose

to circulating immune cells (EDRIC—immune cells circulat-
ing in heart, lung, blood vessels, lymphatic system and blood
reservoirs), particularly in thoracic cancers [7]. In the pelvic
cancers scenario, incidental bone marrow (BM) irradiation has
been identified as a RIL trigger due to myelosuppression [7].
In this regard, BM dose-volumemetrics have been related to

the risk of developing HT, especially in gynaecological cancer
patients [7].
BM is only a part of the pelvic reservoir lymphoid organs

[6]. However, radiation-induced pelvic BM suppression is a
recognized predictor of leukopenia and lymphopenia [7].
This can be explained considering that almost half of the

active BM (aBM) is estimated to be in the pelvic and lumbar
vertebrae (in the adult population) [7].
Additionally, it is necessary to consider that the other pelvic

reservoir lymphoid organs, such as lymph nodes, pelvic blood
vessels and the dense-associated lymphoid tissuewithin the gut
mucosa, are difficult to spare [6].
Flourishing literature is available regarding BM-related tox-

icity in gynaecological cancers, and data from cervical cancer
suggest that limiting BM volumes receiving low radiation
doses is essential to decrease/avoid grade 2–3 HT (e.g., pelvic
BM V10 <90–95% and V20 <76–80%) [7].
In a series of patients with cervical cancer undergoing ChT-

RT, Albuquerque et al. [24] showed and increased risk of
developing grade 2 or greater HT with the whole-pelvic BM
(WPBM) V20 >80%. Three-dimensional conformal RT (3D-
CRT) was employed in this series, and the authors advocated
for pelvic intensity modulated RT (IMRT) as a strategy to
decrease unintended BM radiation exposure [24].
RTOG-0418 included also endometrial cancers among oth-

ers. In this study, BM V40 and median BM dose have been
linked to higher rates of grade 2 or worse HT [25].
Data from another series, analyzing data from 83 cervical

cancer patients, showed a significant decrease in HT, mainly
grade 3 or worse neutropenia, thanks to BM sparing (BMS)
procedures via PET-guided identification of aBM components
[26].
Similar dosimetric findings have also been observed for anal

and rectal patients. Of interest, data in a series of a mixed
population of pelvic cancers (including rectal, cervical, anal,
vaginal and bladder) undergoing ChT-RT, McGuire et al. [27]
reported lymphopenia as the most common toxicity recorded.
Among possible future approaches to address pelvic myelo-

suppression, proton therapy (PT) offers theoretical enormous
advantages. Indeed, PT’s steep dose fall-off allows optimal
pelvic normal tissue sparing [28]. In this regard, Dinges et al.
[28] investigated the use of intensity-modulated PT (IMPT)
for BMS in cervical cancer patients. With IMPT plans a
significant reduction of aBM volume receiving a dose between
5 and 40 Gy was reported (compared to IMRT plans).

4. Closing remarks

When utilizing large elective RT volumes in treating gynaeco-
logical cancer, radiation oncologists should be cautious during
the pandemic. The present times offer an unprecedented op-
portunity to broadly embrace treatment strategies (e.g., BMS)
that avoid reservoir lymphoid organs suppression and the po-
tential subsequent RIL.
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