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Abstract
Hypoxia significantly influences the growth, metastasis and treatment resistance of
cervical cancer (CC), thereby affecting patient prognosis. However, accurately
predicting CC survival remains challenging, and the potential of hypoxia-related genes as
prognostic markers remains uncertain. In this study, using CC single-cell transcriptional
data from the Gene Expression Omnibus database, we employed the InferCNV package
to identify tumor cells and used CellChat to confirm stronger intercellular interactions
in tumor cells with high-hypoxia status. Next, we identified differentially expressed
hypoxia-related genes (DEHLGs) by analyzing data from the Cancer Genome Atlas
(TCGA), Genotype-Tissue Expression, and Molecular Signature Database, which were
further screened using univariate Cox regression and lasso regression analyses, based
on which we constructed a hypoxia prognosis model comprising nine prognosis-related
genes. Risk scores were generated using multivariate Cox regression analysis. The
prognosis model revealed that the overall survival rate was higher in the low-risk than
in the high-risk group. The model’s performance was assessed using the area under
the time-dependent receiver operator characteristic curve, which yielded values of 0.836
and 0.804 for the training and test groups, respectively, indicating a robust prognostic
capability of the model. A nomogram based on the nine hypoxia-related genes and
training groups exhibited a favorable discriminatory ability for CC. Additionally, using
CIBERSORT, we estimated the proportion of immune cells in patients with high- and
low-hypoxia risk, revealing a higher proportion of macrophages (M0) and activated mast
cells in the high-risk group. We successfully established a prognosticmodel for CC based
on nine hypoxia-related genes to accurately predict the prognosis of affected patients.
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1. Introduction

Cervical cancer (CC) accounts for the majority of cancer-
related deaths in women [1], despite the widespread increase
in screening and treatment [2]. Unfortunately, CC is highly
aggressive and patients with metastases and recurrence have
limited treatment options, and a poor overall prognosis [3].
Furthermore, CC is also highly heterogeneous and there is
a lack of tools to address this biological heterogeneity [4].
Therefore, the identification of prognostic biomarkers for CC
is crucial for achieving precise treatment, especially for pa-
tients with advanced illness.
Malignant tumors often exhibit hypoxia, which significantly

contributes to their progression. In hypoxic tumors, genes
related to tumor growth, invasiveness, angiogenesis and eva-
sion from apoptosis are upregulated, rendering tumors more
aggressive [5]. Consequently, hypoxia is considered a factor
that adversely affects prognosis in various cancers, including
bladder, breast, colon, gastric, liver and uterine cancers [6].

According to a study that directly assessed the oxygenation
status in tumors, patients with hypoxic cervical cancer demon-
strated poorer rates of disease-free survival [7]. Hypoxia
promotes CC cell migration through the Rab11 trafficking
integrins αvβ3/focal adhesion kinase (FAK)/phosphoinositide
3-kinases (PI3K) signaling pathway [8]. However, there is no
clear evidence of a relationship between hypoxia and CC cells.
It remains unclear how hypoxia drives CC progression and
affects the expression of related genes. Therefore, exploring
hypoxia-related genes may contribute to survival prediction
and treatment of CC.
The widespread application of second-generation and

single-cell sequencing has provided a deeper understanding of
tumor gene mutations and microenvironments. An increasing
number of prognostic gene markers have been identified,
shedding light on the characteristics of tumor occurrence and
development. Single-cell sequencing enables specific analysis
of cell groups at the single-cell level, revealing differences in
transcriptional expression among different tumor cell subsets
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[9].
Hypoxia plays a significant role in tumor occurrence, metas-

tasis, immune escape and treatment resistance. CC is a highly
heterogeneous, invasive and malignant disease. However,
whether tumor cells in CC are in a hypoxic state or whether
hypoxia-related genes can help predict patient prognosis re-
mains unclear. Therefore, we employed single-cell sequenc-
ing technology to explore hypoxia in CC cells and the in-
teraction between tumor cells under varying hypoxic condi-
tions in different CC cells. We obtained clinicopathologi-
cal and transcriptomic data from the Cancer Genome Atlas
(TCGA) and Genotype-Tissue Expression (GTEx) databases.
Using the Molecular Signatures Database (MsigDB) and high-
throughput bioinformatics analysis, we identified hypoxia-
related genes abnormally expressed in both cancer and healthy
tissues. We carefully discuss their possible functions and
molecular mechanisms. The identified hypoxia-related genes
associated with the prognosis of CC serve as biomarkers clin-
ical practice. Subsequently, we developed a prognostic model
of CC based on differentially expressed hypoxia-related genes
(DEHLGs). Our model can assist in risk stratification and
prognosis assessment of patients with CC, and the identified
genes may become potential new therapeutic targets.

2. Materials and methods

2.1 Data processing
We downloaded single-cell transcriptome data from the
Gene Expression Omnibus (GEO) database (GEO accession:
GSE168652), including CC and adjacent tissue data. Data
analysis was conducted using the R package Seurat (v4.0,
https://github.com/satijalab/seurat) [10]. Various analyses,
such as principal component analysis, uniform manifold
approximation and projection (UMAP), dimensionality
reduction and visualization were conducted on the data.
To identify cell types, we employed SingleR (v1.0.5) [11]
and to examine the copy number alterations in tumor
cells, we used InferCNV (v1.16.0, Trinity CTAT Project,
https://github.com/broadinstitute/inferCNV) [11]. Gene
regulatory network analysis was performed using pySCENIC
(v0.11.2, https://packages.guix.gnu.org/packages/pyscenic/0.1
1.2/) with default parameters. The AUCell algorithm was
used to calculate the regulon activity score (RAS) [12].
The differential expression analysis of important pathways
in each cell subgroup was conducted using the gene set
variation analysis (GSVA) package [13], which is a gene
set enrichment (GSE) method that estimates variation
of pathway activity across a sample population in an
unsupervised manner. To identify and visualize hypoxia-
inducible factor 1 subunit alpha (HIF-1A) expression in
each cell subgroup, we utilized the FeaturePlot function
in Seurat. The hypoxia pathway activity scores for each
cell subgroup were calculated and visualized using the
AUCell package (v3.17, https://github.com/aertslab/AUCell)
[14]. Based on the hypoxia score, which served as an
independent prognostic factor for tumor progression, tumor
cells were divided into high- and low-hypoxia groups using
median value as cutoff. The Gene Set Enrichment Analysis

(GSEA) function embedded in the ClusterProfiler (v4.0
https://github.com/YuLab-SMU/clusterProfiler) software
package was employed to identify gene sets that were
significantly enriched between the two groups [15]. Finally,
to study the molecular interactions between different cell
types and between high- and low-hypoxia tumor cells and
other cells, we utilized the cell communication tool [16].
For further analyses, we retrieved the RNA-sequencing

dataset consisting of 13 normal cervical tissue samples and
305 CC samples along with their corresponding clinical
data from the GTEx (https://gtexportal.org/home/) and
TCGA (https://www.cancer.gov/tcga) databases. The
MSigDB contains a hypoxia-related gene set called
HALLMARK_HYPOXIA. Using the limma package,
DEHLGs were identified based on |log2 fold change| ≥ 0.5
and false discovery rate <0.01 [17].

2.2 Functional enrichment analysis based
on gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG)
To gain a comprehensive understanding of the roles of the
DEHLGs, we conducted GO and KEGG enrichment analyses
using the clusterProfiler package. GO analysis terms included
cellular components, molecular functions and biological pro-
cesses. Values of p and false discovery rate <0.05 were set as
the cut-off criteria.

2.3 Protein-protein interaction (PPI)
network construction and subnetwork
screening
The DEHLGs were uploaded to the STRING database
(http://www.string-db.org/) to construct a PPI network. This
network was visualized using Cytoscape (v3.8.2), and each
gene node was identified using a circular icon. The molecular
complex detection (MCODE) plug-in in Cytoscape was used
to identify subnetworks in the PPI network. The identified
subnetworks were then subjected to further functional
enrichment analysis. The significance level was set at p ≤
0.05.

2.4 Prognostic model construction
The samples of patients with CC with reliable prognostic
information in the TCGA database were randomly divided
into training and test groups. Using the survival package,
we conducted univariate Cox proportional hazards regression
analyses with a p < 0.05 cut-off for the prognostic value
of each gene. LASSO regression analysis was then applied
to identify significant candidate genes. Subsequently, we
constructed a prognostic model using the training group. For
each patient, we calculated a risk score based on the gene
expression level (Expi) and the coefficient of multivariate Cox
regression analysis (βi) in the training group, according to the
following formula:

Risk score = β1 × Exp1 + β2 × Exp2 + βi × Expi

https://github.com/satijalab/seurat
https://github.com/broadinstitute/inferCNV
https://packages.guix.gnu.org/packages/pyscenic/0.11.2/
https://packages.guix.gnu.org/packages/pyscenic/0.11.2/
https://github.com/aertslab/AUCell
https://github.com/YuLab-SMU/clusterProfiler
https://gtexportal.org/home/
https://www.cancer.gov/tcga
http://www.string-db.org/
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Using the median risk score as the threshold, patients in both
cohorts were categorized into high- and low-risk groups. The
prognostic performance of the model was evaluated using a
receiver operating characteristic (ROC) curve generated with
the SurvivalROC software package (v1.0.3). The predictive
capability of the prognostic model was validated using the
results from the test group.

2.5 Survival and prognostic analysis
We used pheatmap package to draw the risk curve, survival
state diagram, and risk heat diagram for the training and test
groups. To assess the impact of clinical parameters and risk
scores on the overall survival (OS) of patients with CC, we
conducted univariate Cox analysis. Additionally, multivariate
Cox analysis was performed to identify independent prognostic
factors. Survival analysis was conducted using the survival and
survminer packages in R, while the survival package was also
used both for univariate and multivariate Cox analyses.

2.6 Nomogram construction
The likelihood of OS was predicted using a nomogram with
calibration plots, created using the rms package for R software.
A significance level of p < 0.05 was considered statistically
significant.

2.7 Verification of the expression level
Immunohistochemical staining images of proteins coding for 7
genes were downloaded from the Human Protein Atlas (HPA)
database (http://www.proteinatlas.org/) to validate at the trans-
lational level in CC tissues compared to normal tissues.

2.8 Evaluation of tumor-infiltrating immune
cells
We used CIBERSORT to evaluate the tumor immune microen-
vironment and its relationship with the hypoxia risk score. This
tool allowed the estimation of the proportions of 22 immune
cell types between the low- and high-risk groups.

3. Results

3.1 Hypoxia in CC cells
We followed the process shown in Fig. 1 to analyze the prog-
nostic value of hypoxia-related genes in CC. Single-cell RNA-
sequencing data of CC in the GSE168652 dataset were an-
alyzed. Using the SingleR package, we identified five dif-
ferent cell types depicted in the UMAP diagrams, epithelial
cells, endothelial cells, smooth muscle cells, monocytes and
T cells (Fig. 2A,B). Using the InferCNV package to detect
chromosomal amplifications and deletions, we observed copy
number alterations in multiple chromosomes specifically in
epithelial cells, indicating their cancerous nature (Fig. 2C).
Furthermore, GSVA revealed significant variations in hypoxia
across different cell types (Fig. 2D).
To further investigate hypoxia in CC cells, we extracted the

expression intensity of HIF-1A from each cell’s subpopulation
and found it to be significantly higher in tumor cells, confirm-
ing the presence of significant hypoxia (Fig. 2E–I). Notably,

our regulon activity score (RAS) analysis, which evaluated the
activities of transcriptional regulators and their targeted genes,
highlighted the correlation between hypoxia and malignancy.

3.2 Strong intercellular interactions of
tumor cells with highly hypoxic status
The hypoxia pathway activity scores of individual CC cells
were calculated and tumor cells exhibited significantly higher
hypoxia scores compared to other cell types (Fig. 3A). Based
on these scores, tumor cells were classified into high- and low-
hypoxia groups. Validation using GSEA revealed significant
enrichment of differentially expressed genes in the hypoxic
gene set between the two groups (Fig. 3B). The GSEA diagram
depicted variations in pathway activity between the high- and
low-hypoxia groups. Furthermore, analyses of cellular interac-
tions (Fig. 3C,D) revealed that tumor cells exhibited enriched
cellular interactions with other cell types, with the dot size rep-
resenting the number of cell groups and the thickness of con-
necting lines indicating the number of interactions. Notably,
cells with high-hypoxia status exhibited stronger interactions
with other cells than those of cells with a low-hypoxia status.

3.3 Identification of DEHLGs in CC
A total of 177 differentially expressed hypoxia-related genes
(DEHLGs) were identified, of which 78 genes met the screen-
ing criteria (p < 0.01, |log2 fold change| > 0.5). Among these
genes, 39 were upregulated and 39 were downregulated. The
expression distribution of these genes is depicted in Fig. 4A,B.

3.4 GO and KEGG pathway enrichment
analysis of DEHLGs
To explore the underlying mechanisms and functions of
DEHLGs, we performed functional enrichment analysis by
categorizing them into upregulated and downregulated groups.
GO terms and KEGG pathways revealed several key findings
mostly related to metabolic processes (Fig. 5A,C).
The downregulated DEHLGs were significantly enriched in

biological processes associated with catabolic processing of
carbohydrates, canonical glycolysis and catabolic processing
of glucose to pyruvate. In contrast, the upregulated DEHLGs
were significantly enriched in the biosynthetic process for
purine nucleotides and purine-containing compounds. Molec-
ular function analysis revealed that downregulated DEHLGs
were significantly enriched in acetylglucosaminyltransferase
activity and monosaccharide binding, whereas the upregulated
DEHLGs were significantly enriched in monosaccharide bind-
ing, uridine diphosphate (UDP)-glycosyltransferase activity,
and cell adhesion molecules. In terms of cellular component
analysis, the downregulated DEHLGs exhibited enrichment in
the collagen-containing extracellular matrix, vacuolar lumen
and lysosomal lumen.
Moreover, KEGG pathway enrichment analyses

revealed that the upregulated DEHLGs were enriched
in glycolysis/gluconeogenesis, HIF-1 signaling pathway,
and central carbon metabolism in cancer. Downregulated
DEHLGs were enriched not only in the same processes but
also in amino acid biosynthesis (Fig. 5B,D).

http://www.proteinatlas.org/
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FIGURE 1. Study design for analyzing hypoxia-related genes in cervical cancer (CC). Abbreviations: GEO: gene
expression omnibus; GSVA: gene set variation analysis; GTEx: Genotype-Tissue Expression; HPA: Human Protein Atlas; RNA-
seq: RNA-sequencing; ROC: receiver operator characteristic; TCGA: The Cancer Genome Atlas.
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FIGURE 2. Analysis of hypoxia in cervical cancer (CC) tumor cells using single-cell RNA-sequencing data. (A) Uniform
manifold approximation and projection (UMAP) diagram of all 17 clusters in the GSE168652 dataset. (B) UMAP diagram
displaying five different cell types identified using the SingleR package. (C) Analysis of chromosomal copy number variation
in tumor cells and cervical endothelial cells as reference data using InferCNV. (D) Heatmap demonstrating gene set enrichment
analysis for the five cell types based on gene set variation analysis. (E–G) UMAP diagram showing (E) the RAS (regulon activity
score), (F) gene expression and (G) the binarized RAS (all samples were Z score-normalized and converted to 0 and 1) of the
hypoxia-inducible factor HIF-1A across different cell subpopulations. (H and I) Box plots presenting (H) the average RAS, and
(I) average gene expression of HIF-1A in different cell subpopulations.
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FIGURE 3. Analysis of interactions between tumor cells in different hypoxic states and other cells in cervical cancer.
(A) Uniform manifold approximation and projection (UMAP) diagram illustrating the fraction of hypoxic pathway activity in
each cell cluster. The color spectrum ranging from blue to yellow represents the fraction from low to high. (B) Gene set
enrichment analysis (GSEA) diagram displaying differences in pathway activity between the high- and low-hypoxia groups.
(C,D) Intercellular interactions depicted through a dot plot, where the size of the dots corresponds to the number of cell groups,
and thickness of connecting lines between cell groups represents the number of interactions. AUC: area under the curve.

FIGURE 4. Differentially expressed hypoxia-related genes (DEHLGs) in cervical cancer. (A) Heatmap illustrates the
expression levels of DEHLGs. (B) The volcano plot displays the distribution of DEHLGs, with upregulated genes shown in red,
downregulated genes shown in green, and genes with unchanged expression shown in black.
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FIGURE 5. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis
of differentially expressed hypoxia-related genes (DEHLGs). (A) GO and (B) KEGG pathway enrichment analyses of
downregulated DEHLGs. (C) GO and (D) KEGG pathway enrichment analysis of upregulated DEHLGs.

3.5 PPI network and subnetworks

To gain further insights into the roles of DEHLGs in CC,
we constructed a PPI network using data from the STRING
database. The networks consisted of 93 nodes and 198 edges
(Fig. 6A). To identify densely connected regionswithin the net-
work, we applied the MCODE plug-in, which led to the identi-
fication of three distinct subnetworks. Subnetwork 1 (Fig. 6B)
comprised genes associated with key metabolic processes such
as glycolysis/gluconeogenesis, carbonmetabolism, amino acid
biosynthesis, the HIF-1 signaling pathway, and fructose and
mannose metabolism.

3.6 Selection of prognostic hypoxia-related
genes

In order to identify hypoxia-related genes with prognostic sig-
nificance, we conducted univariate Cox regression analysis on
the hypoxia-related genes within the PPI network. As a result,
we identified 14 candidate genes that showed association with
prognosis (Fig. 7). Subsequently, we applied the LASSO
criterion for further gene selection, leading to the retention of 9
tumor hypoxia-related genes exhibiting high prognostic value
(Fig. 8 and Table 1).

3.7 Prognostic signature construction and
evaluation
We used the nine hypoxia-related genes identified through
the multivariate stepwise Cox regression analysis to construct
a prognostic signature. The following formula was used to
calculate patient risk scores.
Risk score = (0.0163× ExpP4HA1) + (0.0172× ExpPFKP )

+ (0.0319 × ExpPLIN2) + (−0.2174 × ExpPDK3) + (0.0435
× ExpCAV IN3) + (−0.0185 × ExpSIAH2) + (−0.1071
× ExpGRHPR) + (−0.4070 × ExpLDHC ) + (0.0035 ×
ExpTGFBI )
Survival analysis was performed to assess the predictive

ability of this signature. Based on the median risk score, 148
patients with CC in the training group were split into high-
and low-risk subgroups. Patients in the high-risk subgroup
exhibited a lowerOS than those in low-risk subgroup (Fig. 9A).
Time-dependent ROC analyses were conducted to assess the
prognostic utility of the signature based on the nine hypoxia-
related genes. The area under the ROC curve for the hypoxia
gene risk-scoring model was 0.836 (Fig. 9B), indicating a
good prognostic performance. A heatmap of the expression
signatures of the nine hypoxia-related genes in the low- and
high-risk subgroups, patient survival status, and risk score are
shown in Fig. 9C–E.
To validate the prognostic value, we applied the same for-

mula to TCGA test group. The results showed an area under the
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FIGURE 6. Protein–protein interaction (PPI) network and subnetwork analyses. (A) PPI network of differentially
expressed hypoxia-related genes (DEHLGs). (B) Subnetwork 1 of the PPI network. Green circles represent downregulated
genes and red circles represent upregulated genes.

FIGURE 7. Results of univariate Cox proportional hazards regression (Cox regression) analysis of 14 candidate genes
associated with disease prognosis and hypoxia in the training group. The Nomogram displays hazard ratio scores and 95%
confidence intervals. Genes depicted in green represent downregulated genes, while genes depicted in red represent upregulated
genes.
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FIGURE 8. Multivariate Cox proportional hazards regression (Cox regression) analysis to identify prognosis-related
genes.

TABLE 1. Prognosis-related hypoxia genes identified using multivariate Cox regression analysis.

Gene regulation Gene name Coeff. Hazard ratio Lower 95% CIa Upper 95% CI p-value

Upregulated

P4HA1 0.0163 1.0165 0.9987 1.0346 0.0701

PFKP 0.0173 1.0174 1.0019 1.0332 0.0281*

PLIN2 0.0320 1.0325 1.0123 1.0531 0.0015*

CAVIN3 0.0435 1.0445 1.0169 1.0728 0.0014*

TGFBI 0.0036 1.0036 0.9990 1.0081 0.1223

Downregulated

PDK3 −0.2174 0.8046 0.6703 0.9658 0.0196*

SIAH2 −0.0185 0.9817 0.9551 1.0090 0.1866

GRHPR −0.1071 0.8984 0.8008 1.0079 0.0678

LDHC −0.4070 0.6656 0.3943 1.1237 0.1277

aCI: confidence interval; *p< 0.05. P4HA1: Prolyl 4-Hydroxylase Subunit Alpha 1; PFKP: Phosphofructokinase Platelet;
PLIN2: Perilipin 2; CAVIN3: Caveolae Associated Protein 3; TGFBI: Transforming Growth Factor Beta 1; PDK3:
Pyruvate Dehydrogenase Kinase 3; SIAH2: Siah E3 Ubiquitin Protein Ligase 2; GRHPR: Glyoxylate And Hydroxypyruvate
Reductase; LDHC: Lactate Dehydrogenase C.
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FIGURE 9. Results of the risk score analysis of the nine-genes prognostic model in the training group. (A) Survival
curves for the low- (blue) and high-risk (red) subgroups; the lower graph depicts absolute patient counts. (B) Receiver operating
characteristic (ROC) curve illustrating the predictive overall survival based on a risk scores. (C) Heatmap displaying the
expression of the nine hypoxia-related genes, with high expression shown in red and low expression shown in green. (D)
Distribution of patient risk scores, ranging from low (green) to high (red). (E) Survival status of test patients categorized by low
(green) and high (red) risk scores.
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curve score of 0.804 for this hypoxic genetic risk score model
(Fig. 10B). Moreover, patients in the high-risk group exhibited
worse OS (Fig. 10A,C–E), indicating a good sensitivity and
specificity of the prognostic model.

3.8 Prognostic value of the hypoxia risk
signature in CC
To determine the prognostic significance of different clinical
features in patients with CC from the TCGA database, we con-
ducted univariate and multivariate Cox regression analyses.
The results revealed risk scores derived from the hypoxia risk
signature as independent prognostic factors associated with OS
(p < 0.001, Fig. 11A–D). These findings highlight the critical
role of hypoxia signaling pathway in tumor progression.

3.9 Construction of a nomogram based on
the nine hypoxia-related genes
We integrated the signature of the nine hypoxia-related genes
derived from multivariate Cox analysis to develop a nomo-
gram, a quantitative tool to predict the prognosis of patients
with CC. By drawing a vertical line between the total point
axis and each pre- and post-axis, we can estimate the antici-
pated survival rates for patients with CC at 1, 2 and 3 years.
This information may be useful for clinical decision-making
(Fig. 12).

3.10 Validating the expression of the
hypoxia-related genes
We used immunohistochemistry (IHC) results from the HPA
database to further validate these hypoxia-related genes in CC.
Among the nine hypoxia-related genes, seven had available an-
tibody staining data. The analysis revealed that the levels of the
proteins encoded by these seven genes, namely P4HA1 (Prolyl
4-Hydroxylase Subunit Alpha), PKFP (Phosphofructokinase
Platelet), PDK3 (Pyruvate Dehydrogenase Kinase 3), TGFB1
(Transforming Growth Factor Beta 1), CAVIN3 (Caveolae As-
sociated Protein), SIAH2 (Siah E3 Ubiquitin Protein Ligase)
and GRHPR (Glyoxylate and Hydroxypyruvate Reductase)
were significantly higher in cancerous tissues compared to
healthy tissues (Fig. 13). The IHC results confirmed the sig-
nificant upregulation of these hypoxia-related genes in tumor
tissues compared to normal controls.

3.11 Immune cell analysis between high-
and low-hypoxia risk groups in CC
Using the CIBERSORT tool, we compared the differences in
immune cell infiltration of 22 immune cell types in patients
with high and low risk of hypoxia in the TCGA training group
(Fig. 14). Our findings revealed notable differences between
groups. Specifically, the high-risk group exhibited higher
proportions of macrophages (M0) and activated mast cells
compared to the low-risk group (p < 0.05) (Fig. 14A,B). In
contrast, the proportion of resting mast cells was higher in
the low-risk group than that in the high-risk group (p < 0.05;
Fig. 14C).

4. Discussion

Single-cell sequencing is a high-throughput technology that
enables gene expression profiling at the individual cell level,
allowing for the identification of distinct cell subtypes and
providing insights into their functional characteristics and in-
tercellular interactions. This approach overcomes the limi-
tations of traditional multicellular transcriptome sequencing
technology, which often overlook tumor tissue heterogeneity
[18]. In our study, we confirmed the hypoxic status of CC
and observed that highly hypoxic cells exhibited stronger in-
tercellular interactions. Using single-cell transcriptomic data
of CC from the GEO database, we identified different cell
groups and tumor cells. Moreover, GSEA revealed significant
variation in hypoxia across cells. Furthermore, by calculating
and visualizing the hypoxia pathway activity score for each
cell subgroup, we confirmed prominent hypoxia in tumor cells.
In particular, tumor cells with a highly hypoxic status showed
stronger cell–cell connections with other cells.
The biological functions of the 177 identified DEHLGs

were explored with a co-expression and PPI networks. Subse-
quently, we developed a risk model based on nine DEHLGs to
predict prognosis of CC. By analyzing the correlation between
the risk model and tumor immune infiltration, we further clar-
ified the relationship between tumor hypoxia and immunity.
Our study contributes to a better understanding of the tumor
microenvironment and provides potential tools for evaluating
the prognosis of CC and identifying therapeutic targets, shed-
ding light on the pathogenesis of CC.
Functional enrichment analyses revealed that the DEHLGs

were associated with various metabolic processes, namely
canonical glycolysis, glucose catabolic processing to pyru-
vate, and glycolytic processing through fructose-6-phosphate.
KEGG pathway analysis indicated that the DEHLGs play reg-
ulatory roles in the occurrence and progression of CC through
pathways such as glycolysis/gluconeogenesis and the HIF-1
signaling pathway. Over the past decade, studies have demon-
strated that aerobic glycolysis is a hallmark of abnormal tumor
energy metabolism [19, 20]. Tumor cells exhibit enhanced
glycolytic metabolism under aerobic conditions compared to
normal cells, which is known as the Warburg effect. This
metabolic switch provides an advantageous supply of material
and energy substrate for tumor cell growth, enabling them
to survive hypoxic environments. Studies have shown that
transketolase like 1 (TKTL1) accelerates themalignant process
of CC cells by participating in glycolysis [21]. Myosin 1B
(MYO1B) activates the extracellular regulated protein kinases
(ERK)/HIF-1A pathway and its downstream glycolysis-related
genes, promoting glycolysis, migration and invasion, thus
promoting the malignant progression of CC [22].
Through the interaction network of the DEHLGs, we identi-

fied 14 hypoxia-related genes with prognostic value following
a preliminary screening. Several of these genes were shown
to be associated with tumor progression. Further analyses
allowed us to identify nine hypoxia-related genes as the most
relevant ones with high prognostic value. According to the
HPA database, prolyl 4-hydroxylase subunit α 1 (P4HA1),
transforming growth factor β (TGFβ), and caveolae associated
protein 3 (CAVIN3) have been associated with prognostic roles
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FIGURE 10. Results of the risk score analysis of the nine-gene prognostic model in the test group. (A) Survival curves for
low- (blue) and high-risk (red) subgroups; the lower graph shows absolute patient counts. (B) Receiver operating characteristic
(ROC) curve demonstrating the predictive overall survival based on risk scores; (C) Heatmap illustrating the gene expression
of the nine hypoxia-related genes, with high expression depicted in red and low expression shown in green. (D) Distribution of
patient risk scores, ranging from low (green) to high (red). (E) Survival status of test patients classified by low (green) and high
(red) risk scores. AUC: area under the curve.
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FIGURE 11. Assessment of the prognostic significance of clinical features including disease stage, age and risk score
in patients with cervical cancer. (A,B) Univariate analysis of the prognostic values of different clinical parameters in the (A)
training group and (B) test group. (C,D) Multivariate analysis of the prognostic values of different clinical parameters in the (C)
training group and (D) test group.

FIGURE 12. Nomogram for predicting 1-, 2- and 3-year overall survival of patients with cervical cancer in the Cancer
Genome Atlas training group.
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FIGURE 13. Verification of differentially expressed hypoxia-related genes in cervical cancer (tumor) and normal
cervical tissues using data from the Human Protein Atlas (HPA) database.

F IGURE 14. Infiltration rates of immune cells in high- and low-risk groups in the TCGA training group. Box plots
depict the distribution of immune cell infiltration rates, with the high-risk group represented in green and the low-risk group in
red. (A) Macrophages (M0). (B) Activated mast cells. (C) Resting mast cells.
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and are not highly expressed in CC.
Recent research has highlighted the importance of P4HA1

in the synthesis of various types of collagens. P4HA1 is
overexpressed in multiple tumors, including breast, prostate,
glioma, colorectal, head and neck cancer. Thus, it may be
a potential prognostic biomarker for CC. In breast cancer,
P4HA1 enhances the stemness of cancer cells, reduces the level
of reactive oxygen species and oxidative phosphorylation, and
promotes chemoresistance by reducing proline hydroxylation
on HIF-1A and activating the P4HA/HIF-1 axis [23]. Addi-
tionally, in lung adenocarcinoma, P4HA1 has been associated
with a poor prognosis, and its abnormal expression related to
different numbers of immune infiltrating cells (CD4+ T cells
and B cells) [24].
TGFβ is known to exhibit both tumor-inhibiting and tumor-

promoting effects, with differential expression in various types
of tumors. Specifically, TGFBI is downregulated in breast,
ovarian and lung cancers and overexpressed in renal clear cell
carcinoma, colorectal, and pancreatic cancer [25]. The role
of TGFβ protein in tumorigenesis depends on the tissue type
and tumor microenvironment. During early carcinogenesis,
TGFBI exerts a tumor-suppressive effect. Cancer cells use
regulatory mechanisms to inhibit TGFBI expression, including
epigenetic regulation throughmicroRNA and TGFBI promoter
methylation [26]. However, in most identified tumors, TGFBI
promotes cancer progression. For instance, in breast cancer,
TGFβ regulates tumor hypoxia and promotes metastasis by
influencing tumor vasculature, blood perfusion improvement,
and reducing hypoxia [27]. This is the main driver of cancer
stem cells and metastasis. Other studies have demonstrated
that TGFBI is abundantly expressed in CC tissues and is
associated with hypoxia and poor prognosis [28]. Therefore,
TGFBI exhibits oncogenic features and has the potential to
serve as a marker and potential therapeutic target for CC.
Phosphofructokinase (PFK) is the main rate-limiting en-

zyme in glucose metabolism, and phosphofructokinase platelet
(PFKP) represents the platelet subtype of PFK that contributes
to the reprogramming of cancer metabolic pathways. Hypoxia-
induced oxidation of ataxia-telangiectasia mutated kinase en-
hances breast cancer cell invasion by upregulating the protein
levels of PFKP and citrate synthase in hypoxic breast cancer
cells, redirecting the glycolytic flow to pyruvate and citrate
[29]. High PFKP expression has been associated with in-
creased mortality in patients with lung cancer [30]. PFKP
expression was further found to be associated with glycolysis
in lung cancer cells, which may influence the development
and progression of lung cancer. Silencing PFKP can re-
duce the proliferation of hepatocellular carcinoma cells, their
colony-forming ability, stem cell markers, and β-catenin lev-
els, whereas PFKP overexpression shows the opposite effects.
Therefore, PFKP promotes liver cancer cell proliferation and
maintains the stability of liver cancer cells [31].
In different studies, CAVIN3, perilipin 2 (PLIN2), pyruvate

dehydrogenase kinase 3 (PDK3), lactate dehydrogenase C
(LDHC), and E3 ubiquitin-protein ligase 2 (SIAH2) have been
reported to be associated with the occurrence and development
of various tumors and poor patient prognosis [32–36]. These
markers are expected to be used as markers for targeted tumor
therapy and prognostic evaluation.

The risk model based on the nine hypoxia-related genes,
demonstrated high accuracy in predicting the prognosis of CC,
making it a valuable tool to select patients with poor prognoses.
Furthermore, the construction of a nomogram provides an
intuitive way to predict overall survival rates. Analyzing the
proportion of immune cells in the high- and low-risk groups,
suggested a possible interaction between tumor hypoxia and
the immune system. Hypoxia is a prominent feature of the
tumor immune microenvironment, recruiting immunosuppres-
sive cells and inhibiting the function of immune cells, thereby
promoting tumor progression. Our results suggest that this
prognostic model can be advantageous in assisting the clinical
treatment of CC.
Several studies have demonstrated the crucial role of multi-

gene signatures in predicting the prognosis of CC [37, 38]. For
instance, one study constructed a four immune-related gene
model for the prediction of CC prognosis, Xie et al. [39]
constructed an eight-gene model to predict the prognosis of
CC after radiotherapy, while another study established a model
based on 70 genes to predict the prognosis of advanced CC
[39–41]. Despite these efforts, there is a limited number of
CC prediction models based on hypoxia-related genes in the
literature. In our study, we sought to optimize the prognosis
prediction for CC by combining multiple algorithms to analyze
DEHLGs. Moreover, predictions based on only nine genes
will greatly reduce sequencing costs and medical resources.
The identified genes exhibit important biological functions,
highlighting their potential for clinical application in adjuvant
therapy. However, it is important to acknowledge that our
signature is limited to TCGA database, and its accuracy should
be thoroughly validated in clinical cohorts. In addition, due to
the small number of single cell samples, there was no good
connection between single cell results and bulk RNA results
in our study. Furthermore, the biological functions of the
prognostic genes need to be confirmed by more prospective
experiments.

5. Conclusions

In the study, we used single-cell sequencing data to analyze
the expression of hypoxia in CC cells and investigated the
expression and prognostic value of these DEHLGs in CC.
We successfully constructed a prognostic model of nine hy-
poxia genes, with the potential to be used as an independent
prognostic factor for CC. Our findings contribute to a better
understanding of the pathogenesis of CC and provide valuable
insights for survival prediction and treatment strategies.
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The datasets analyzed in the present paper are all available on
NCBI GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi)
and TCGA (https://portal.gdc.cancer.gov/). Single-cell
transcriptome data from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc
=GSE168652). RNA-sequencing dataset of 13 normal cervical
tissue samples and 305 CC samples with their corresponding
clinical data from the GTEx (https://gtexportal.org/home/)
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The MSigDB database contains the hypoxia-related
gene set, Hallmark-hypoxia (https://www.gsea-
msigdb.org/gsea/index.jsp).
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