A novel pyroptosis-related gene signature for predicting the prognosis of cervical cancer

Dan Li¹,2,3,†, Zhihua Du¹,‡, Hualin Song¹,2,3, Rongjuan Li¹, Changhui Han¹, Xiao Wang¹, Ke Wang¹,2,3, Jingtao Luo²,3,5,*

1 Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, 300060 Tianjin, China
2 Key Laboratory of Cancer Prevention and Therapy, 300060 Tianjin, China
3 Tianjin's Clinical Research Center for Cancer, 300060 Tianjin, China
4 Department of Oncology, Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Provincial Hospital of Traditional Chinese Medicine, 051000 Shijiazhuang, Hebei, China
5 Department of Maxillofacial and Otorhinolaryngology Oncology and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, 300060 Tianjin, China

† These authors contributed equally.

*Correspondence
jluo@tmu.edu.cn
(Jingtao Luo)

Abstract
Although morbidity has decreased in developed regions, cervical cancer (CC) continues to have the highest incidence of all gynecological malignancies. The burden of morbidity and mortality in developing regions is also rising quickly, especially for advanced CC. Along with apoptosis, iron death, and other forms of programmed cell death, pyroptosis is a significant inflammatory process. Its connection to the malignancy mechanism has been verified. The expression of genes linked to pyroptosis in CC tissue and its relationship to prognosis, however, remain poorly understood. Using The Cancer Genome Atlas, we first discovered 13 differentially expressed pyroptosis-related genes (DE-PRGs) in the study (TCGA). Based on DE-PRGs, CC patients were divided into four subtypes. The 4 parts' times showed large variations according to the K-M curve. Then, using the least absolute shrinkage and selection operator (LASSO) Cox regression method, we created a model for predicting CC based on pyroptosis-associated genes. There were significant differences in overall survival (OS) times involving the high-risk and low-risk groups for all CC patients in the TCGA group, who were divided into low-risk and high-risk groups (p equals 0.0441). The risk score status as an independent prognostic factor for CC was confirmed by independent prognostic predictor validation. The analyses of single-sample gene set and enrichment analysis (ssGSEA), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) all revealed significant differences in immune cells and immune pathways involving high- and low-risk groups (p less than 0.001), indicating a weakened immune status in high-risk groups. In conclusion, pyroptosis-associated genes are involved in tumor immunity and can help determine a patient's prognosis for CC. As a result, we have created and validated a signature that is related to pyroptosis and predicts CC prognosis, which may aid in early diagnosis, prognostic analysis, and immunotherapy.

Keywords
Cervical cancer; Pyroptosis; Prognosis; Signature; Bioinformatics; TCGA

1. Introduction

With an estimated 604,000 new cases and 342,000 fatalities worldwide in 2020 [1], cervical cancer (CC) ranks first in the incidence of gynecological malignant tumors and fourth in the incidence and mortality of malignant tumors in women. The 5-year relative survival rate for loco-regionally advanced CC is 58%, and the rate for distant disease is 17% [2]. Women who fall under the ages of 35 and 44 are most likely to develop CC, with an average age of 50 at diagnosis [3]. The primary cause of CC is high-risk human papillomavirus (HPV) infection. Although the HPV vaccine and early screening have decreased the incidence in Western countries, CC remains the leading cause of cancer-related deaths among women in developing countries due to socioeconomic conditions, particularly in most of Africa and Asia [4]. The two main forms of treatment for patients with metastatic or recurrent cervical cancer are chemotherapy and immunotherapy. The primary method for assessing the prognostic risk of CC at this time is still Federation International of Gynecology and Obstetrics (FIGO) staging, and due to the significant heterogeneity, a prediction model based on precise molecular markers is urgently required [5]. To prevent metastasis or recurrence, promptly alter treatment plans, increase survival rates, and lower mortality rates, it is essential to accurately identify high-risk patients. As a result, it is important to identify trustworthy biomarkers and create novel CC prognostic models.

The gasdermin (GSDM) protein family mediates pyroptosis, a type of inflammation that results in programmed cell death. At the moment, more research is being done on both classical pathways that depend on caspase-1 and nonclassical pathways that depend on caspase-4/5/11. Cell enlargement, plasma membranelysis, chromatin fragmentation, and the release of intracellular pro-inflammatory components are all effects of...
pyroptosis. Pyroptosis significantly influences the growth, invasion, and metastasis of tumor cells, which has an impact on the course and prognosis of cancer [6]. Predictive models of pyroptosis-associated genes (PRGs) in ovarian cancer [7], lung adenocarcinoma [8], and glioma [9] have recently been established by a number of studies. The prognostic, diagnostic, and therapeutic value of pyroptosis in CC, however, is only briefly discussed in the literature, and it is unclear how PRGs function in CC.

In this study, we investigated the levels of PRG expression in CC using gene expression data from The Cancer Genome Atlas (TCGA) database, and CC patients were grouped according to PRG and clinical characteristics. We developed a prognostic model based on PRGs and assessed the sensitivity and specificity of the model. The analysis of functional and pathway enrichment, as well as the impact of prognosis-associated genes on immune pathways and tumor immune infiltration, were finally finished. By developing a new model of CC prognosis, our research data offers new biomarkers and targets for the diagnosis and treatment of CC.

2. Materials and methods

2.1 Datasets

On 01 September 2021, we collected 3 samples from healthy humans and 306 samples from patients with cervical cancer from the TCGA database [10] (https://portal.gdc.cancer.gov/repository). RNA sequences (RNA-seq) and the clinical features they are associated with, such as age, sex, survival status, and tumor grade, are found in bioinformatics and clinical data. The TCGA database's access guidelines and publication guidelines were strictly followed in this study.

2.2 Determination of pyroptosis-related genes with differential expression

From previously located literature, 33 genes related to pyroptosis were found [7]. R software (version 4.0.5, formerly AT&T, now Lucent Technologies, New Jersey, US) was the tool that was used the most throughout the entire research process. Gene expression values were uniformly normalized to fragment per kilobase million for differential gene expression analysis (FPKM). We conducted a consensus cluster analysis of 306 CC patients. We increase the consensus matrix K between 2 and 10. The appropriate K value was selected to analyze the prognosis. Using the “limma” package, we examined the DE-PRGs in 306 CC tissues and 3 normal tissues. DE-PRGs were defined as |log fold change| ((logFC) > 0.5 and False positive rate (FDR) 0.05. A heat map of the outcomes was displayed. In addition, String (http://string-db.org) was used to visualize the protein-protein interaction (PPI) network of DE-PRGs (version 11.0).

2.3 Development of the pyroptosis-associated gene model for cervical cancer prediction

A model of CC risk prognosis based on DE-PRGs was required to further assess the significance of DE-PRGs in patients with poor prognoses for cervical cancer. In order to control system deviation, we first performed an analysis of Cox regressions with univariate variables to screen DE-PRGs related to OS. Adjusted p values were then presented in the assessment of the correlation involving DE-PRGs and OS. Five DE-PRGs were recognized as risk genes for the predictive model under the screening criteria of p less than 0.05. A prognostic model and risk scoring formula based on 5 genes were then presented, and LASSO regression by the “glmnet” package was established to prevent model overfitting. Following this, 306 CC patients were divided into low- and high-risk groups based on the median risk score, and Kaplan-Meier analysis was used to compare the difference in OS time between the two groups. On the basis of the 5 genes, we used the “stats” package for principal component analysis. Finally, using the “survival”, “survminer”, and “timeROC” packages, receiver operating characteristic (ROC) curve analysis at 1, 2, and 3 years was performed.

2.4 Independent prognostic predictor validation

We used age, tumor grade, and the risk score as three covariates in univariate and multivariate Cox regression analyses to test whether the risk score was a standalone prognostic factor for overall survival (OS) in CC patients.

2.5 Analysis of functional and pathway enrichment

To research the DE-PRGs’ biomedical molecular mechanism. The “clusterProfiler” package was used to conduct analyses of the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Statistics were deemed significant at p less than 0.05.

2.6 Evaluation of the prognostic signature of infiltrating immune cells

Using the “gsva” package, single-sample gene set enrichment analysis (ssGSEA) was used to evaluate the different immune cell types’ levels of infiltration, immune-related functions, and immune-associated pathways in various risk subgroups.

2.7 Statistical investigation

R software was used to complete all of the statistical analyses for this study. The first step was to compare the differentially expressed genes in normal tissues and CC tissues using univariate analysis of variance (ANOVA) and the chi-squared (2) test. Then, using Kaplan-Meier survival curves and the log-rank test, the OS of the four subgroups was compared. Independent validation of the risk prediction model was carried out using both univariate and multivariate regression analyses. In order to compare the enrichment values of immune cells and immune pathways involving subgroups, we used the Mann-Whitney U test. In Fig. 1, the flow chart was displayed.

3. Outcomes
RNA expression data in TCGA database for 3 normal samples and 306 CC samples

Compare the expression of 33 pyroptosis-related genes (17 DEGs)

Screen OS-related genes in TCGA cohort

LASSO regression model to identified a 5-gene signature

Survival analysis

GO and KEGG pathway analysis

Infiltrating immune cell analysis

Consensus analysis

PPI analysis

Cluster survival analysis

FIGURE 1. The specified workflow picture of information dissection. TCGA: The Cancer Genome Atlas; CC: cervical cancer; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; PPI: protein-protein interaction; DEGs: differentially expressed genes; OS: overall survival; LASSO: least absolute shrinkage and selection operator.
<table>
<thead>
<tr>
<th>gene</th>
<th>logFC</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSDMC</td>
<td>7.862221</td>
<td>0.003662</td>
</tr>
<tr>
<td>GSDMB</td>
<td>3.112795</td>
<td>0.004590</td>
</tr>
<tr>
<td>NOD2</td>
<td>3.427569</td>
<td>0.004977</td>
</tr>
<tr>
<td>CASP3</td>
<td>1.190806</td>
<td>0.008141</td>
</tr>
<tr>
<td>NLRP7</td>
<td>8.936591</td>
<td>0.008957</td>
</tr>
<tr>
<td>PYCARD</td>
<td>2.146169</td>
<td>0.010222</td>
</tr>
<tr>
<td>TNF</td>
<td>3.456196</td>
<td>0.010811</td>
</tr>
<tr>
<td>IL18</td>
<td>2.799112</td>
<td>0.011220</td>
</tr>
<tr>
<td>CASP6</td>
<td>1.089384</td>
<td>0.011430</td>
</tr>
<tr>
<td>AIM2</td>
<td>6.218314</td>
<td>0.013480</td>
</tr>
<tr>
<td>CASP8</td>
<td>1.238229</td>
<td>0.015293</td>
</tr>
<tr>
<td>CASP5</td>
<td>3.489072</td>
<td>0.017623</td>
</tr>
<tr>
<td>ELANE</td>
<td>−2.909690</td>
<td>0.017991</td>
</tr>
<tr>
<td>NLRP1</td>
<td>−1.223890</td>
<td>0.023634</td>
</tr>
<tr>
<td>CASP4</td>
<td>1.068867</td>
<td>0.032911</td>
</tr>
<tr>
<td>NOD1</td>
<td>−0.591720</td>
<td>0.037414</td>
</tr>
<tr>
<td>NLRP2</td>
<td>5.075027</td>
<td>0.039856</td>
</tr>
<tr>
<td>PJVK</td>
<td>−0.712440</td>
<td>0.055001</td>
</tr>
<tr>
<td>CASP1</td>
<td>1.369288</td>
<td>0.076807</td>
</tr>
<tr>
<td>SCAF11</td>
<td>0.444498</td>
<td>0.087067</td>
</tr>
<tr>
<td>GSDMA</td>
<td>2.724424</td>
<td>0.123013</td>
</tr>
<tr>
<td>IL1B</td>
<td>1.809181</td>
<td>0.129452</td>
</tr>
<tr>
<td>GSDME</td>
<td>−0.466370</td>
<td>0.139594</td>
</tr>
<tr>
<td>TIRAP</td>
<td>−0.602210</td>
<td>0.150337</td>
</tr>
<tr>
<td>NLRP3</td>
<td>−0.544070</td>
<td>0.223392</td>
</tr>
<tr>
<td>CASP9</td>
<td>−0.202770</td>
<td>0.285428</td>
</tr>
<tr>
<td>NLRC4</td>
<td>0.545963</td>
<td>0.297305</td>
</tr>
<tr>
<td>GSDMD</td>
<td>0.421161</td>
<td>0.325220</td>
</tr>
<tr>
<td>NLRP6</td>
<td>0.760673</td>
<td>0.359875</td>
</tr>
<tr>
<td>PLCG1</td>
<td>−0.121860</td>
<td>0.396761</td>
</tr>
<tr>
<td>PRKACA</td>
<td>−0.127110</td>
<td>0.415100</td>
</tr>
<tr>
<td>GPX4</td>
<td>0.441223</td>
<td>0.493294</td>
</tr>
<tr>
<td>IL6</td>
<td>−1.215250</td>
<td>0.888966</td>
</tr>
</tbody>
</table>

FC: fold change; P: p-value; GSDM: Gasdermin; NOD: Nucleotide Binding Oligomerization Domain Containing; CASP: Caspase; NLRP: NLR Family Pyrin Domain Containing; PYCARD: PYD And CARD Domain Containing; TNF: Tumor Necrosis Factor; IL: Interleukin; AIM: Absent In Melanoma; ELANE: Elastase Neutrophil Expressed; PJVK: Pejvakin; SCAF: SR-Related CTD Associated Factor; TIRAP: TIR Domain Containing Adaptor Protein; PLCG: Phospholipase C Gamma; PRKACA: Protein Kinase CAMP-Activated Catalytic Subunit Alpha; GPX: Glutathione Peroxidase.
3.1 DE-PRG identification using normal samples as well as cervical cancer tissues

To begin with, we compared the expression levels of 33 PRGs in 3 normal samples and 306 CC tissues and rendered them as a heatmap in Fig. 2A (green indicates a low level of expression; red indicates a high level of expression). Among them, 22 genes (Absent In Melanoma 2 (AIM2), Caspase 1 (CASP1), CASP3, CASP4, CASP5, CASP6, CASP8, Glutathione Peroxidase 4 (GPX4), Gasdermin A (GSDMA), GSDMB, GSDMC, GSDMD, Interleukin 18 (IL18), IL7, NLR Family CARD Domain Containing 4 (NLRC4), NLR Family Pyrin Domain Containing 2 (NLPR2), NLPR6, NLPR7, Nucleotide Binding Oligomerization Domain Containing 2 (NOD2), PYD And CARD Domain Containing (PYCARD), SR-Related CTD Associated Factor 11 (SCAF11), and Tumor Necrosis Factor (TNF)) showed high levels of expression. There were 11 genes with low expression (CASP9, Elastase Neutrophil Expressed (ELANE), GSDME, IL6, NLRP1, NLRP3, NOD1, Pejvakin (PJVK), Phospholipase C Gamma 1 (PLCG1), Protein Kinase Camp-Activated Catalytic Subunit Alpha (PRKACA), and TIR Domain Containing Adaptor Protein (TIRAP)). In addition, 17 genes were identified by p less than 0.05 (** if p less than 0.005, *** if p less than 0.001), of which 5 genes (NLRP7, NOD2, CASP3, GSDMB, and GSDMC) were distinctly different (p less than 0.01), while p less than 0.05 could not be determined for the remaining 12 genes (NLRP2, CASP5, ELANE, NLRRP1, NOD1, TNF, PYCARD, CASP6, CASP8, IL-18, CASP4, as well as AIM2). The specific expression of PRGS is detailed in Table 1. Subsequently, the PPI plot (Fig. 2B) indicated various associations among 33 PRGs and hub genes, including CASP1, CASP3, CASP5, CASP4, CASP8, CASP9, AIM2, NLRC4, IL18, IL1B, PYCARD, NOD2, NLRRP1, NLRRP3, GSDMD, and TNF. All hub genes had p values less than 0.05, except for CASP1, CASP9, NLRC4, IL1B, NLRRP3, and GSDMD. Moreover, we conducted a correlation network for all PRGs, which is shown in Fig. 2C (the color red indicates positive correlations and the color blue indicates negative correlations).

3.2 Cervical cancer subgroups on the basis of DE-PRGs

We chose (logFC) > 0.5 and FDR less than 0.05 as the criteria for screening DE-PRGs. We found 13 DE-PRGs (AIM2, CASP3, CASP5, CASP6, CASP8, ELANE, GSDMB, GSDMC, IL18, NLRP7, NOD2, PYCARD, TNF). To identify CC subtypes on the basis of 13 DE-PRGs, we conducted a consensus cluster analysis of 306 CC patients. We increase the consensus matrix K between 2 and 10, the result showing that when k = 4, the intragroup correlation is maximum, while the intergroup correlation is the lowest. Therefore, 306 CC patients can be categorized to 4 different subgroups on the basis of DE-PRGs. (Fig. 3A). As shown in the heat map (Fig. 3B), there were no significant differences involving the 4 subgroups regarding clinical and pathologic features, including age, sex, survival status, and tumor grade. However, which is very important, the K-M curve indicated considerable variations in os time involving the 4 subgroups (Fig. 3C, p equals 0.007).

3.3 Construction of the model for predicting cervical cancer by pyroptosis-associated genes

We conducted an analysis of Cox regressions with univariate variables to locate DE-PRGs associated with OS, and TNF were identified as risk genes for the dangerous model, with p less than 0.0001, hazard ratio (HR) equals 1.0828 (1.0471–1.1197) (Fig. 4A). Then, we found another 4 DE-PRGs with p values less than 0.4 (AIM2, CASP5, NLRRP7, PYCARD) (Fig. 4A). We conducted multivariate Cox regression analysis among the 5 genes and identified 1 gene (AIM2) was protective, with p equals 0.0405, HR equals 0.9857 (0.9722–0.9994), and 2 genes (CASP5 and TNF) were dangerous, with p equals 0.0419 and HR equals 1.3361 (1.0106–1.7663) and p less than 0.001, with HR equals 1.0906 (1.0544–1.1280) (Fig. 4B). By performing the LASSO Cox regression analysis, a 5-gene signature was constructed according to the optimum lambda value (Fig. 4C,D). Thus, the risk scores of all patients could be calculated by the gene expression levels and invariant regression coefficients in the model. The formula for the prognostic risk assessment score was as follows: risk score = (-0.014431 × AIM2 exp.) plus (0.289740 × CASP5 exp.) plus (-0.011175 × NLRRP7 exp.) plus (-0.012916 × PYCARD exp.) plus (0.086690 × TNF exp.). On the basis of the median risk score, 306 CC patients were categorized to low- and high-risk subgroups (Fig. 4E). The principal component analysis (PCA) revealed that patients were split into 2 clusters and that as the risk score rose, so did the risk of death and the duration of survival (Fig. 5A,B). High- and low-risk subgroups OS times were significantly different, according to the Kaplan-Meier curve (p equals 0.0441, Fig. 5C). Finally, the ROC curve, which represented the predictive performance, indicated that the areas under the ROC curve (AUCs) were 0.624, 0.686, and 0.678 at 1 year, 2 years, and 3 years, respectively (Fig. 5D).

3.4 Validation of independent prognostic predictor

The analysis of Cox regressions with univariate variables indicated that HR equals 1.7162, 95% confidence interval (CI) (1.0322–2.8534), p equals 0.0373, which demonstrated that the risk score was significantly correlated with OS time (Fig. 6A). Moreover, after further adjustment for confounding factors, multivariate Cox regression analysis proved that the risk score remains an independent prognostic factor for CC. (HR equals 1.7592, 95% CI (1.0459–2.9592), p equals 0.0332, Fig. 6B). Additionally, we created a heatmap of clinical characteristics for the TCGA group (Fig. 6C), and we discovered that the age of patients as well as their survival status varied widely across the low- and high-risk subgroups (p less than 0.05).

3.5 Functional enrichment and pathway analysis

To explore genetic function and pathway differences involving two risk subgroups on the basis of the risk predictive model, we completed functional and pathway enrichment analysis. Firstly, we extracted differentially expressed genes (DEGs) involving the two subgroups from the TCGA database by

Figure 2. Identification of DE-PRGs involving normal samples and cervical cancer tissues. (A) Heatmap of the PRGs involving the normal and the tumor tissues. (B) PPI network showing the interactions of the PRGs. (C) The correlation network of the PRGs (red line: positive correlation; blue line: negative correlation. The depth of the colors reflects the strength of the relevance). *p* values were indicated as: *p* less than 0.01, **p** less than 0.01, ***p** less than 0.001. DE-PRGs: differentially expressed pyroptosis-related genes; PRGs: pyroptosis-related genes; PPI: protein-protein interaction.

Figure 3. Cervical cancer subgroups on the basis of DE-PRGs. (A) 306 CC patients were grouped into four clusters according to the consensus clustering matrix (*k* = 4). (B) Heatmap and the clinicopathologic characters of the two clusters classified by these DE-PRGs. (C) Kaplan-Meier OS curves for the four clusters.
the “limma” package (FDR less than 0.05 and $|\log_{2}FC| \geq 1$). Thus, 709 DEGs were exposed. Then, using DEGs as a base, functional and pathway analysis were carried out. According to GO functional enrichment analysis, DEGs were primarily enriched in five biological process (BP) aspects: synapse organization, cell-cell adhesion via plasma-membrane adhesion molecules, extracellular matrix organization, and extracellular structure organization. DEGs were significantly enriched in two aspects of molecular function (MF), namely, receptor ligand activity and signaling receptor activator activity. Regarding the cellular component (CC), the synaptic membrane, glutamatergic synapse, neuron to neuron synapse, and postsynaptic membrane were the four areas where DEGs were most enriched (Fig. 7A). Later, KEGG pathway enrichment analysis revealed that DEGs were significantly enriched in the following pathways, including the calcium signaling pathway, cytokine-cytokine receptor interaction, and neuroactive ligand-receptor (Fig. 7B). This finding suggests that DEGs may be connected to cellular interactions as well as immune-related interactions.

3.6 Infiltrating immune cell assessment of the prognostic signature

Using ssGSEA, we thoroughly compared the differences between the low- or high-risk subgroups for 16 different immune cell types and 13 immune pathways. Interestingly, the box diagram showed that 14 immune cell types in the low-risk group were greater than those in the high-risk group, with the exception of mast cells and neutrophils. They included a Dendritic cells (aDCs), cluster of differentiation 8+ (CD8+) T cells, natural killer (NK) cells, plasmacytoid dendritic cells, follicular helper T cells (Tfh), Th1 cells, Th2 cells, and tumour-infiltrating lymphocytes (TIL), all of which were significantly higher than those in the high-risk group (Fig. 8A, p less than 0.001). In addition, the enrichment values of the low-risk group in the other 12 immune pathways—particularly APC co-stimulatory, checkpoint, cytolytic activity, inflammation-promoting, major histocompatibility complex (MHC) class I, parainflammatory, T-cell co-inhibitory, T cell co-stimulation, and Type I interferon (IFN) response—were generally higher than those of the high-risk group (Fig. 8B, p less than 0.001).

4. Discussion

In recent decades, pyroptosis has contributed significantly to programmed death of cells, which has received more and more attention, and many associated studies are also underway. Pyroptosis has a two-way impact on occurrence and progression of cancer. Pyroptosis releases inflammatory factors that cause normal cell mutations, and immune cells pyroptosis can also
FIGURE 5. The risk signature for predicting the prognosis of cervical cancer. (A) PCA plot for CCs on the basis of the risk score. (B) The survival status for each patient. (C) Kaplan-Meier curves for the OS of patients. (D) ROC curves demonstrated the predictive efficiency of the risk score. AUC: areas under the curve; PCA: principal component analysis.

FIGURE 6. Validation of independent prognostic predictor. (A) Univariate analysis for the TCGA group. (B) Multivariate analysis for the TCGA group. (C) Heatmap involving clinicopathologic features and the risk groups.
trigger tumorigenesis. Conversely, tumor cells pyroptosis will suppress cancer progression \cite{11, 12}. Therefore, inhibiting normal cells pyroptosis, but promoting tumor cells could be an important direction for cancer prevention and treatment. Predictive models of pyroptosis-associated genes have established in several cancers, including ovarian cancer \cite{7}, lung adenocarcinoma \cite{13}, gastric cancer \cite{14} and glioma \cite{9}. Zhou et al. \cite{15} screened 8 pyroptosis-associated genes (GPX4, GSDME, Granzyme A (GZMA), GZMB, IL1B, NOD1, PRKACA, TNF) associated with CC prognosis, but the pyroptosis as a predictive marker for cancer of the colon is still not fully elucidated.

In this study, we first examined 33 known PRG mutations and variants in CC samples and discovered that the majority were highly expressed. We then used PPI analysis to confirm the association of 33 PRGs. In order to thoroughly evaluate the prognostic value of these pyroptosis-related regulators, we used consensus clustering to separate the CC samples into four subgroups based on the DE-PRGs. The 4 groups of CC subgroups showed significant differences in survival analyses. By using multivariate Cox analysis and lasso analysis, we created a CC prognosis model that contains 5 PRGs. The risk score was inversely correlated with immune cell infiltration of T cells, NK cells, B cells, dendritic cells, and macrophages, according to ssGSEA analysis, which also showed that immune cell infiltration has a significant impact on the survival of CC patients.

The prognostic model of CC established in this research
suggests that CASP55 and TNF are biomarkers of poor prognosis, while AIM2, NLRP7, and PYCARD are indeed protective. AIM2, as the main regulator of pyroptosis, initiates the intrinsic immunity of cells by activating Caspase-1, followed by shearing pro-IL-1β and pro-IL-18. AIM2 deficiency is linked to a poor prognosis for prostate cancer [16], colon cancer [17], and breast cancer [18], according to research, which has demonstrated that AIM2 has the opposite effect in various cancers. However, lung adenocarcinoma [19, 20], gastric cancer [21], and cutaneous squamous cell carcinoma [22] all have poor prognoses when AIM2 is highly expressed. So et al. [23] reported that Sirtuin 1 (SIRT1) knock-down cells induced CC cell pyroptosis by activating more AIM2 inflammasomes. Hsu et al. [24] discovered that high expression of AIM2 was positively correlated with antiangiogenic drugs resistance in epithelial ovarian cancer.

A member of the NLR family known as NLRP7 (nucleotide-binding domain and leucine-rich repeat-containing family, pyrin domain-containing 7) is thought to play a role in inflammation and innate immunity [25]. In a genetic reconstitution study using the human embryonic kidney (HEK) 293 cell line, NLRP7 was discovered to inhibit caspase-1-mediated IL-1β maturation, indicating an anti-inflammatory function [26]. Li et al. [27] proved that high expression of NLRP7 in colorectal cancer (CRC) could promote tumor progression. According to Ohno et al. [28], endometrial cancer patients with high NLRP7 expression had a poor prognosis and a higher risk of myometrial invasion. According to another study, NLRP7 directly contributes to the development of choriocarcinomas and suppresses the immune system, which aids in the spread of the tumor [29]. However, in contrast to earlier research, our study showed that NLRP7 was a protective factor.

Activating signal cointegrator (ASC), a crucial adapter protein that assembles and activates through homologous interactions, is encoded by the gene PYCARD. It is an intracellular signaling molecule made up of the pyrin domain (PYD) at the N-terminus and the caspase recruitment domain (CARD) at the C-terminus [30]. A frequent and early occurrence in the development of many tumors, including ovarian cancer [31], prostate cancer [32], non-small cell lung cancer [29], and breast cancer [33], is abnormal hypermethylation of the PYCARD promoter region. These studies suggested that PYCARD might function as a tumor suppressor gene and that its silencing might increase the risk of developing particular tumors. The finding that PYCARD is a protective factor in CC prognosis presented in our study is consistent with this finding. Despite this, Liang et al. [34] demonstrated that high PYCARD expression is a standalone predictor of a poor prognosis as well as chemotherapy resistance throughout glioma.

Caspase 5 contributes significantly to both classical and nonclassical inflammasome-induced pyroptosis. Caspase 5 is activated when the pattern-recognition receptors recognize cytoplasmic lipopolysaccharide, which in turn cleave gasdermin-D (GSDMD), releasing inflammatory factors that lead to pyroptosis. This is when caspase 5 is activated. On the other hand, Caspase 5 that has been activated can interact with Caspase 1 to encourage its activation and cause pyroptosis via the traditional pathway. Caspase 5 has been linked to the development and prognosis of several cancers, including gastric cancer [35], glioblastoma polymorphic [36], cervical cancer [37], and osteosarcoma [38]. According to Zhou et al.’s findings, long-non-coding RNA Caspase 5 promoted the malignant phenotypes of human glioblastoma multiforme [36]. Zhang et al. [38] proposed that Caspase 5 is associate with poor prognosis in the pyroptosis related model of osteosarcoma. Babas et al. [37] found that serum caspase-5 activity was elevated in patients with CC, which indicating that Caspase 5 could be involved in the cervical malignancy mechanisms.

T lymphocytes, macrophages, and NK cells all produce TNF, an inflammatory substance. Apoptosis and pyroptosis are triggered by the activation of TNF- and its involvement in the formation of NLRP3 inflammasomes, which are mediated by Caspase 1. According to Sha et al. [39], serum levels of TNF- in CC patients were noticeably elevated before surgical intervention, and they then went back to normal. A genetic variant of the TNF-α gene (rs1800629) was linked to higher levels and risks of developing CC, according to research by Behboodi et al. [40].

Our current study had a number of drawbacks. First off, the sample size was relatively small, the original data was only retrieved from the TCGA database, and there was no external database validation or support for large sample sizes. Second, we were unable to perform a more thorough clinical analysis because we lacked information on the samples’ clinical characteristics. Third, further investigation and translational therapy through clinical and experimental studies are required. The molecular mechanism underlying the impact of pyroptosis on patients with CC prognosis is unknown.

5. Conclusions

To summarize, our study used the public database TCGA to construct a CC prediction model using R language and statistical analysis based on five genes associated with pyroptosis. Using this model, one may be able to accurately predict the prognosis of CC, provide a new strategy for exploring the molecular markers and pathogenesis of CC, and establish an important reference for future molecular precision treatment of CC.

ABBREVIATIONS

AVAILABILITY OF DATA AND MATERIALS

The data presented in this study are available on reasonable request from the corresponding author.
AUTHOR CONTRIBUTIONS
JTL and KW—designed the research study. DL—performed the research. HLS, RJL, and CHH—analyzed the data. HLS and XW—wrote the manuscript. All authors read and approved the final manuscript.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE
Not applicable.

ACKNOWLEDGMENT
We are grateful for the data provided by the TCGA database.

FUNDING
This research was funded by National Natural Science Foundation of China, grant number 82073006.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

REFERENCES
[32] Collard RL, Harya NS, Monzon FA, Maier CE, O’Keefe DS. Methyltion

How to cite this article: Dan Li, Zhihua Du, Hualin Song, Rongjuan Li, Changhui Han, Xiao Wang, et al. A novel pyroptosis-related gene signature for predicting the prognosis of cervical cancer. European Journal of Gynaecological Oncology. 2024; 45(2): 88-99. doi: 10.22514/ejgo.2024.031.