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Abstract
Energy metabolism plays a crucial role in supporting cancer cell growth and driving
tumor progression. Our objective was to create a unique gene signature based on
metabolic genes that could accurately predict the prognosis of patients with ovarian
cancer (OC).We accessedmicroarray data of patients with OC fromThe Cancer Genome
Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Patients from the
TCGA dataset were divided into training and internal validation sets, maintaining a
ratio of 3:1. Based on Least absolute shrinkage and selection operator Cox regression
analysis, twenty-nine metabolism-related genes were identified for the development of
the metabolic signature. Patients in the training set were successfully divided into low-
and high-risk groups with a significantly different prognosis (Hazard Ratio (HR): 2.76,
95% Confidence Interval (CI): 2.12–3.59, p < 0.001). The prognostic value of this
signature was confirmed in the internal (HR: 3.06, 95% CI: 1.80–5.17, p < 0.001)
and external validation sets (HR: 2.17, 95% CI: 1.57–2.99, p < 0.001). The time-
dependent receiver operating characteristic (ROC) at the 5-year interval demonstrated
that the prognostic accuracy of this metabolic signature (Area under curve (AUC) =
0.723) was superior to that of any other clinicopathological features, including the
Federation of Gynecology and Obstetrics stage (AUC = 0.509), grade (AUC = 0.536),
and debulking status (AUC = 0.637). Further immune cell infiltration analysis showed
that low-risk patients had a higher enrichment of immune-activating cells. In conclusion,
a novel metabolic signature with good performance was established in this study.
This prognostic model could aid in the identification of high-risk patients who require
aggressive follow-up and therapeutic strategies.
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1. Introduction

Ovarian cancer (OC) is one of the most common and lethal
cancers of the female reproductive system worldwide [1].
Despite advances in treatment strategies over the past few
decades, cure rates remain relatively unchanged and the overall
survival (OS) of patients remains low. Currently, the American
Joint Committee on Cancer Tumor-Nodal-Metastasis (TNM)
and FIGO staging system is still the dominant risk evaluation
method used [2]. However, the prognostic accuracy of this
system is poor, and the prognosis of patients at the same stage
varies significantly. Therefore, it is essential to identify highly
specific and sensitive prognostic biomarkers for the detection
of high-risk patients who require more aggressive therapeutic
interventions.
Increasing evidence suggests that multigene-based gene sig-

natures are promising prognosis prediction models for OC [3–
10]. However, despite having had several multigene signatures

established for OC, their prognostic accuracy remains weak.
Therefore, a robust gene signature with considerable predictive
performance is required.
Cancer cells share the common phenotype of uncontrolled

cell proliferation and must efficiently generate the energy and
macromolecules required for cellular growth [11]. Previous
studies confirmed that metabolic reprogramming during tumor
initiation and progression is critical for all cancer cells. Accu-
mulating evidence revealed that aerobic glycolysis, metabolic
symbiosis, glutamine metabolism, enhanced lipogenesis, and
redox stress are important metabolic reprogramming features
crucial for cancer progression [12–16]. In addition, many
critical enzymes or transporters that mediate these processes
are prognostic biomarkers of OC [17–24]. For instance, hexok-
inase 2 and glyceraldehyde-3-phosphate dehydrogenase regu-
late mTOR and apoptosis in OC [25]. Additionally, as a critical
regulator of hypoxia-induced glycolysis, Glucose transporter-
1 (GLUT1) is associated with angiogenesis and epidermal
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growth factor signaling in OC [26]. However, no previ-
ous studies have comprehensively analyzed these metabolism-
related genes in OC. Amultigene signature based on metabolic
genes may have superior prognostic accuracy in predicting
cancer prognoses.
In the present study, 855 patients with OCwho had complete

follow-up information and microarray data were identified
from The Cancer Genome Atlas (TCGA) and Gene Expres-
sion Omnibus (GEO) databases. Based on the univariate
and least absolute shrinkage and selection operator (LASSO)
Cox regression models, a robust metabolic signature with
considerable prognostic accuracy was established for OC.

2. Methods

2.1 Datasets
Microarray information generated via the Affymetrix Human
Genome U133A Array platform was acquired from the
TCGA database (https://genome-cancer.ucsc.edu). Patients
exhibiting both transcriptome data and comprehensive follow-
up records were identified. Subsequently, three additional
microarray datasets (GSE14764, GSE26712 and GSE23554),
generated using the same platform, were procured from the
GEO database and amalgamated to form an external validation
cohort. Corresponding Entrez Gene identifiers were employed
to map all probes [27]. In cases where multiple probes were
associated with a specific Entrez Gene identifier, the mean
value was computed to ascertain the average expression
level. To address potential batch variations across distinct
microarray datasets, the ComBat method was employed.

2.2 Metabolism-related gene set
A total of 5557 human energy metabolism-related genes
were downloaded from The Human Metabolome Database
(http://hmdb.ca/).

2.3 Identification of prognostic metabolic
genes
To form our training dataset, we randomly allocated patients
sourced from the TCGA database into either the training or
validation groups, adhering to a 3:1 ratio. Within the training
set, we carried out an initial univariate Cox survival analysis.
This analysis enabled us to evaluate the prognostic relevance
of metabolic genes and pinpoint those that exhibit prognostic
associations. The LASSO Cox regression model at a ten-
fold cross-validation was used to identify the most important
prognosis-related metabolic genes [28].

2.4 Construction of the metabolic risk score
Employing LASSO Cox regression analysis, we ascertained
a definitive roster of metabolic genes that hold significance in
constructing amulti-gene signature. Employing a standardized
formula for risk score calculation, we computed individual
risk scores by amalgamating the gene expression values with
their respective LASSO Cox regression coefficients for each
patient. With reference to the median risk score established
within the training cohort, patients were stratified into groups

characterized by low and high risk.

2.5 Functional annotation
To identify differentially expressed genes (DEGs) between
the low- and high-risk patients, the Linear Models for Mi-
croarray data (LIMMA) method was used. The threshold for
significance was set at an adjusted p value < 0.05 and fold
change >1.5. Furthermore, functional annotation of Kyoto
Encyclopedia of Genes and Genomes (KEGG)/Gene ontology
(GO) biological process enrichment was performed using the
clusterProfiler R package.

2.6 Immune infiltration analysis
We employed the Cell-type Identification by Estimating Rel-
ative Subsets of RNA Transcripts (CIBERSORT) deconvolu-
tion approach to evaluate the relative abundance of 22 tumor-
infiltrating immune cells in each sample. These included naïve
and memory B cells, plasma cells, Cluster of Differentiation
(CD)8 and CD4 T cells, naïve T cells, CD4 memory resting
and activated T cells, follicular helper T cells, regulatory T
cells, γδ T cells, resting and activated natural killer (NK)
cells, monocytes, M0–M2 macrophages, resting and activated
dendritic cells, resting and activatedmast cells, eosinophils and
neutrophils.

2.7 Statistical analysis
For contrasting survival disparities among the two survival
curves, we employed Kaplan-Meier survival plots in conjunc-
tion with log-rank tests. To assess prognostic precision, we
carried out time-dependent receiver operating characteristic
(ROC) analysis, with the area under the curve (AUC) serving
as an indicator of predictive efficacy. In cases where the data
exhibited skewed distribution, theWilcoxon rank-sum test was
utilized; meanwhile, for normally distributed data, differences
between groups were assessed using Student’s t-test. We used
R software (version 3.2.5; www.r-project.org) for all statistical
analyses.

3. Results

3.1 Development and definition of the
metabolic signature
A total of 422 patients with OC from the TCGA dataset were
divided into a training set, and the remaining 140 patients
included in the internal validation set. Basic clinicopatho-
logical information of the patients from the TCGA and GEO
datasets is shown in Table 1. Initially, we performed univariate
Cox survival analysis and identified 97 metabolic genes (p
< 0.01; Supplementary Table 1). Then, the LASSO Cox
regression model was used to screen these metabolic genes,
whereafter 29 were identified as part of the metabolic signature
for OC (Fig. 1). Finally, the risk score was calculated based
on the expression values of the 29 genes and risk regression
coefficients for each patient. The risk regression coefficients
for the 29 genes are listed in Supplementary Table 2.
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TABLE 1. Basic information of patients from TCGA and GEO datasets.
Discovery set
(N = 422)

Internal validation
(N = 140)

External validation
(N = 293)

FIGO stage
I 8 7 8
II 21 6 1
III 332 100 69
IV 59 25 2

Debulking status
Optimal 83 32 154
Suboptimal 297 89 135

Grade
Low grade 57 18 52
Moderate/High grade 357 117 239

FIGO: Federation of Gynecology and Obstetrics.

FIGURE 1. Selection of prognosticmetabolic genes based onLeast Absolute Shrinkage and SelectionOperator (LASSO)
Cox model. (A) Profiles of the coefficients obtained through the LASSO for the 98 metabolic genes associated with overall
survival (OS). (B) Selection of the tuning parameter (λ) in the LASSO model utilizing tenfold cross-validation with the minimum
criterion.
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3.2 Performance of the metabolic signature
in the training set
According to the median risk score, the patients were stratified
into two distinct risk groups: low- and high-risk groups. No-
tably, as depicted in Fig. 2A (left panel), the distribution of risk
scores exhibited a compelling association with the occurrence
of adverse events leading to death, indicating that patients with
higher risk scores had a distinctly elevated likelihood of experi-
encing mortality. To comprehensively evaluate the prognostic
accuracy of the identified metabolic signature, time-dependent
ROC analysis was performed, which robustly demonstrated its
exceptional discriminative power in predicting OS at multiple
critical temporal landmarks, including at 1-, 3- and 5-year
intervals (Fig. 2A, middle panel). Furthermore, leveraging the
versatility of the Kaplan-Meier survival plot with the log-rank
test, we confirmed that patients classified in the high-risk cat-
egory exhibited significantly inferior OS outcomes compared
with their counterparts in the low-risk group (Fig. 2A, right
panel). Furthermore, survival rates of patients within the low-
risk stratum were documented to be 93.5%, 81.2% and 53.8%
at the 1-, 3- and 5-year intervals, respectively. In striking
contrast, patients allocated to the high-risk group demonstrated
notably poorer survival rates, recorded at 90.4%, 52.1% and
18.1% for the respective time intervals (HR: 2.76, 95% CI:
2.12–3.59, p < 0.001; Fig. 2A, right panel).

3.3 Validation of the metabolic signature
The previous results were validated using an external valida-
tion set. As expected, patients in the high-risk group presented
significantly poorer OS rates compared with those cases in
the low-risk group (HR: 3.06, 95% CI: 1.80–5.17, p < 0.001;
Fig. 2B, right panel). The 1-, 3- and 5-year OS rates in the low-
risk group were 97.8%, 69.1% and 58.8%, respectively, and
those in the high-risk group were 85.8%, 49.0% and 17.4%,
respectively.
The same analysis was performed on the external validation

cohort. In total, 293 patients with OC from the GSE14764,
GSE26712 and GSE23554 datasets were identified to validate
the prognostic value of the developed metabolic signature.
Based on the cutoff point determined in the training set, 138
(58.0%) patients were classified as low risk and 155 (31.6%)
as high risk. Consistent with results of the training and internal
validation sets, this signature performed well in predicting OS
(Fig. 2C, middle panel) and could separate patients into low-
and high-risk groups with significantly different OS rates (HR:
2.17, 95% CI: 1.57–2.99, p < 0.001; Fig. 2C).

3.4 Subgroup and prognostic accuracy
analyses of the metabolic signature
To test the independence of the developed metabolic signature
in predicting OS rates, multivariate Cox regression analysis
was performed for the training, internal validation, and ex-
ternal validation sets. The results suggest that this metabolic
signature was independently associated with OS in the train-
ing and validation sets (Table 2). Further stratified analysis
showed that this metabolic signature was a robust prognostic
factor in patients with different tumor stages, grades, and

debulking statuses (Fig. 3).
To further compare the prognostic accuracy of the metabolic

signature with that of other clinicopathological factors, sur-
vival ROC analysis was performed (Fig. 4). The results con-
firmed that the metabolic signature (AUC = 0.723) performed
better than any other tested factor, including the FIGO stage
(AUC = 0.509), grade (AUC = 0.536), and debulking status
(AUC = 0.637).

3.5 Construction of the metabolic
signature-based nomogram
Following meticulous adjustment for other pertinent clinico-
pathological variables, our analyses unequivocally substanti-
ated that the metabolic signature, along with debulking status,
retained their status as two robust, independent prognostic
factors within the entire cohort under investigation (Fig. 5A).
To enhance the clinical applicability and usability of this highly
promising prognostic signature, we meticulously constructed
a comprehensive nomogram based on insights gleaned from
the multivariate analysis (Fig. 5B). Crucially, this meticulously
devised nomogram seamlessly integrates the dynamically in-
formative contributions of the metabolic signature and debulk-
ing status, which could holistically empower clinicians with a
valuable tool for personalized prognostic assessments.

3.6 Pathway enrichment and immune
characteristics of the metabolic signature
To identify DEGs between low- and high-risk patients, the
LIMMA method was used, and a total of 77 genes with fold
change>1.5 and FDR<0.5 identified (Supplementary Table
3). Then, GO/KEGG enrichment analysis was performed
and showed that the metabolic signature was significantly
associated with the tumor metastasis-related biological process
or various pathways, including extracellular matrix organiza-
tion, extracellular structure organization, extracellular matrix-
receptor interaction, and the Transforming Growth Factor-beta
signaling pathway (Fig. 6A–D). Furthermore, we performed
CIBERSORT analyses to characterize immune cell infiltration
in patients (Fig. 7A). By comparing the infiltrating cells be-
tween low- and high-risk patients, we observed that activated
dendritic cells, M1 macrophages, T follicular helper cells,
and γδ T cells were notably enriched in the low-risk patients
(Fig. 7B).

4. Discussion

Despite advancements in treatment strategies over the past
decades, the 5-year OS rate of patients diagnosed with OC
remains less than 50%. Death risk evaluation of patients prior
to treatment may enable risk-adjusted therapeutic interven-
tion and hence offer an improved, individualized treatment
and follow-up scheme. Generally, high-risk patients can be
channeled into trials involving aggressive therapies. However,
no robust risk stratification tools have been established to
predict the prognosis of OC. In the present study, a novel
and robust prognostic signature incorporating 29 metabolism-
related genes was established to improve death risk assessment
for patients with OC. The prognostic value of this metabolic
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FIGURE 2. Performance of metabolic signature in training, internal validation and external validation. (A) Distribution
of risk scores for mortality, survival receiver operating characteristic (ROC) curves at intervals of 1, 3 and 5 years, and Kaplan-
Meier survival plots for patients categorized into low- and high-risk groups within the training dataset. (B) Equivalent analyses
conducted in the internal validation dataset. (C) Corresponding assessments performed within the external cohort. AUC: area
under the curve.

TABLE 2. Multivariate Cox regression analysis of metabolic signature in predicting OS.
HR p*

Training set 22.99 (10.56–50.09) <0.001
Internal validation set 7.87 (1.78–34.68) 0.006
External validation set 27.55 (9.84–77.09) <0.001
*Adjusting for FIGO stage, grade and debulking status. HR: Hazard Ration; FIGO:
Federation of Gynecology and Obstetrics.
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FIGURE 3. Kaplan-Meier survival analysis of the metabolic signature in the entire dataset (N = 855) stratified by the
FIGO stage (A,B), debulking status (C,D), and histological grade (E,F).
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FIGURE 4. Time-dependent receiver operating characteristic (ROC) curves evaluated at the 5-year interval, showcasing
the performance of the metabolic signature, debulking status, FIGO stage, and tumor grade within the complete cohort.
AUC: area under the curve; FIGO: Federation of Gynecology and Obstetrics.

FIGURE 5. Multivariate Cox regression and analysis and clinical nomogram. (A) Multivariate Cox regression analysis
results in patients with ovarian cancer (OC). (B) Prognostic nomogram integrating the metabolic signature and debulking status.



8

FIGURE 6. Functional annotation of GO/biological process (A), GO/molecular function (B), GO/cellular component
(C), and KEGG (D) based on differentially expressed genes (DEGs) between the low- and high-risk patients. GO: Gene
ontology; BP: Biological process; MF: Molecular function; CC: Cellular Component; KEGG: Kyoto Encyclopedia of Genes and
Genomes; ECM: extracellular matrix; TGF: Transforming Growth Factor.

FIGURE 7. Immune cell infiltration analysis between low and high risk groups. (A) Analysis depicting the immune
cell infiltration profile within ovarian cancer (OC) tissues. (B) Boxplot illustrating the immune cell proportions determined via
CIBERSORT analysis. NK: Natural killer; CD: Cluster of Differentiation.
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signature determined in the training set was successfully val-
idated in the internal and external validation sets, suggesting
good reproducibility in predicting OS for patients with OC.
Further, multivariate and subgroup analyses based on FIGO
stage, debulking status, and histological grade showed that
this biomarker was an independent prognostic factor for OS
in OC. Additionally, prognostic accuracy analysis based on
time-dependent ROC curves revealed the best results for the
metabolic signature among the other clinicopathological fea-
tures, suggesting that incorporating it into the current risk
evaluation system could notably improve the prediction of
long-term survival. Based on the TCGA data, Chen et al.
[5] proposed a new consensus ovarian subtype classifier for
high-grade serous ovarian carcinoma. Although this subtyping
classifier exhibited moderate pairwise concordance across our
data compendium and was associated with OS in a meta-
analysis across datasets, its performance in predicting OS
in patients with OC is inferior to the metabolic signature
developed in this study.
Most of the metabolism-related genes incorporated into this

signature have been previously studied in OC and validated
as prognostic factors. Phosphoglycerate dehydrogenase
(PHGDH) mediates the biosynthesis of serine from glucose,
which is one of the most studied metabolic pathways and has
been shown to be linked to platinum resistance in OC [29].
ALDH5A1 is an A1 member of the aldehyde dehydrogenase
5 superfamily, and its expression was downregulated in
patients with OC. It was found that a high level of ALDH5A1
is associated with improved OS rates [30]. Annexin A4
(ANXA4) is highly expressed in OC, and its knockdown can
result in significant growth retardation and greater sensitivity
to carboplatin in OC cells [31]. Asparaginase-like 1 (ASRGL1)
is overexpressed in OC and closely associated with cell growth
and apoptosis [32]. The receptor tyrosine kinase, AXL, was
found to be primarily expressed in advanced-stage OC,
and inhibition of its signaling results in decreased invasion
and matrix metalloproteinase activity, thus inhibiting tumor
metastasis potential [33]. Frizzled Class Receptor 10 (FDZ10)
mRNA stability is correlated with upregulation of the Wnt/β-
catenin pathway and contributes to peroxisome proliferator
activated receptor inhibitor resistance in OC [34]. The
N-acetylgalactosaminyltransferase 6 (GALNT6) enzyme
that mediates the initial step of mucin type-O glycosylation
enhances aggressive phenotypes in OC cells by regulating
epidermal growth factor receptor activity [35]. Glutathione
S-transferase Zeta 1 (GSTZ1) has been previously reported
as a prognostic gene in OC [36]. Microfibril-associated
Protein 4 (MFAP4) is highly expressed in OC, and its high
expression levels predict chemotherapy sensitivity and are
significantly associated with poor prognosis in patients with
OC [37]. Solute Carrier Family 7 Member 11 (SLC7A11),
which mediates cystine-glutamate exchange, could serve as
an indicator of the cellular response to chemotherapy, offering
a potential target for increasing the chemotherapy response to
multiple drugs [38]. Transglutaminase 2 (TGM2) was shown
to play a crucial role in the regulation of doxorubicin/cisplatin
resistance in OC [39]. Regarding the other metabolism-related
genes included in our signature, further clinical and basic
research should be performed to unveil their prognostic value

and molecular functions in OC.
By comparing the infiltrating cells between low- and high-

risk patients, we observed that activated dendritic cells, M1
macrophages, T follicular helper cells, and γδ T cells were no-
tably enriched in the low-risk patients. Immune cell infiltration
plays a critical role in tumor development, progression, and
response to therapy. Immune cells, such as cytotoxic T and
natural killer cells, can recognize and eliminate cancer cells,
functioning as a defense mechanism against tumor growth.
This immune surveillance is crucial to prevent the expansion
and spread of cancer cells. Based on these results, we propose
that antitumor immunity may be highly activated in low-risk
patients.
This was the first study to comprehensively analyze the

prognostic value of metabolism-related genes in OC and to de-
velop a novelmetabolic signature for predictingOC risk. How-
ever, this study had several limitations. First, all data usedwere
obtained from public databases, and prospective validation
based on polymerase chain reaction data is needed. Second,
several important parameters, such as detailed chemotherapy
regimens and histological type, were not available in the public
databases. Lastly, the mechanisms underlying the involvement
of metabolic genes in OC progression requires further investi-
gated.

5. Conclusions

In conclusion, a novel metabolic signature with good
performance was established in this study. This prognostic
model could aid in the identification of high-risk patients
requiring aggressive follow-up and therapeutic strategies.
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