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Abstract
Breast cancer, a prevalent global concern affecting women, underscores the importance
of early detection for improved treatment outcomes and reduced mortality rates.
Mammogram image is widely employed as a tool for early detection of breast tumors.
Incorrect diagnoses elevate the risk of cancer metastasis to vital organs like the lungs,
stomach and lymph nodes. This study presents a software application categorizing
mammogram images as benign or malignant. It relies on intrinsic features and employs
twelve pre-trained deep-learning models. Additionally, ten feature selection algorithms
are utilized to identify crucial attributes. Exploiting various feature selection techniques,
pinpoint the most representative ones. The selected features from each algorithm
contribute to building and testing theGaussian Support VectorMachine (SVM) classifier.
ReliefF selects the optimal features, reflecting the highest test accuracy in the SVM
classifier. The recorded results demonstrate an accuracy, sensitivity, precision and
specificity of 99.9%. These findings underscore the potential of combining diverse deep-
learning structures with feature-reduction techniques to enhance diagnostic capabilities.
The research highlights the technology’s potential adoption in the healthcare sector,
particularly considering the substantial volume of images involved and the heightened
reliability it introduces to the mammogram image diagnosis process.
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1. Introduction

Breast cancer (BC) is one of the most common diseases around
the world, especially for women, as around 50% of breast
cancers develop in women who have no identifiable breast
cancer risk factor other than gender (female) and age (over
40 years). In 2020, there were 2.3 million women diagnosed
with breast cancer and 685,000 deaths globally. As of the
end of 2020, there were 7.8 million women alive who were
diagnosed with breast cancer in the past five years, making
it the world’s most prevalent cancer [1]. We could limit the
severity of BC if we detected it early, and one of the methods
that could be used for that purpose is the Mammogram, which
is an imaging device that uses the X-ray principle but for the
breast only at lower doses compared to the ordinary X-ray
device [2]. It is worth mentioning that mammography is the
best test for doctors to detect BC early, up to three years before
it can be felt [3]. There are two types of tumors: benign
and malignant. Benign cells are non-cancerous cells and are
formed by abnormal cell growth. In many cases, they do not
need treatment; they also have a smooth and regular shape
and usually, when removed, do not grow back. Conversely,
malignant tumors formwhen cancer cells multiply and develop
into a mass, where they invade nearby tissues. They have an

uneven shape and may also separate from tumors and spread
throughout the body in a process called metastasis.
Developing an automated system for diagnosing breast tu-

mors is an optimistic objective for researchers, with the goal of
assisting doctors in reducing misdiagnoses, whether they are
false positives or false negatives. The current research focuses
on the field of computer-aided diagnosis (CAD) system devel-
opment that revolves around identifying the most significant
features for distinguishing between different types of breast
masses. Consequently, this paper centers its attention on the
most pertinent features for breast mass analysis, leveraging
artificial intelligence techniques. One of the most extensive
datasets utilized in various algorithms to construct a sensitive
model for breast mass diagnosis is the Curated Breast Imaging
Subset Digital Database for Screening Mammography (CBIS-
DDSM) dataset [4–6].
Multiple experiments were carried out on the aforemen-

tioned dataset. Numerous research investigations have utilized
the DDSM dataset, with examples including work by Hassan,
S.A. and team [7] in 2020. They used the DDSM and INbreast
datasets to train deep convolutional neural networks for clas-
sification, specifically AlexNet and GoogleNet. The models
demonstrated impressive accuracy on both ConvolutionNeural
Network (CNN) networks, with the AlexNet model achieving
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100% accuracy on CBIS-DDSM and INbreast databases. The
aim was to compare the performance of the two deep learning
models. They just focused on using the AlexNet model for
classification.
In 2021, Lou, M. and their research group [8] introduced

a novel multi-level global-guided branch-attention network
(MGBN) for mass classification, utilizing DDSM and INbreast
datasets, yielding moderate results with an Area under the
curve (AUC) of approximately 0.8375. Furthermore, A. Bac-
couche and team [9] employed the “You Only Look Once”
model (YOLO) alongside three datasets for detection and clas-
sification. While their results were remarkable in detection,
the classification did not exceed 74.4%. Niu J et al. [10]
also utilized CNN with the Convolutional Block Attention
Module (CBAM) to enhance feature extraction, resulting in
improved performance in DDSM, not exceeding 96%. Mean-
while, Khaoula Belhaj Soulami and team [11] implemented an
end-to-end UNet model for automatic detection, segmentation
and classification tasks, achieving an F1-score of 0.99 with a
focus on tumor detection and segmentation.
In 2022, S. R. Sannasi Chakravarthy and Harikumar

Rajaguru [12] introduced an algorithm called the enhanced
Crow-Search Optimized Extreme Learning Machine (ICS-
ELM) for mass detection and classification. They utilized
DDSM, Mammographic Image Analysis Society (MIAS) and
INbreast datasets, achieving maximum overall classification
accuracies of 97.193%, 98.137% and 98.266% for DDSM,
MIAS and INbreast datasets, respectively.
Moreover, Kumar, I. and associates [13] explored dense

tissue pattern characterization using conventional networks.
They experimented with different activation functions and
achieved the best accuracy on theDDSMdataset usingResNet-
18, reaching 92.3%. The method focused on the impact
of activation functions on the classification results of deep
learning models.
Due to the influence of feature extraction on the classi-

fication accuracy of breast masses, Caiqing Liao and team
[14] proposed the Feature Selection and Enhancement Net-
work (FSE-Net) for classifying mammogram images. They
introduced a novel feature selection and enhancement network
FS and employed DDSM and INbreast datasets, achieving
accuracy that did not exceed 80.6% and 95.6%, respectively.
All the preceding experiments have primarily concentrated

on tasks like classification, segmentation or detection using
deep learning with a single model. Since each deep learning
model possesses its unique structure and behavior in feature
extraction and image classification, previous studies have often
revolved around specific sets of relevant features, potentially
limiting the model’s generalizability to new test cases.
In contrast, this paper takes a different approach by employ-

ing a comprehensive range of techniques to extract pertinent
features from various models. This approach provides addi-
tional insights into the nature of breast masses, and harnesses
feature reduction methods to obtain the most relevant deep
features for classification using machine learning classifiers.
The novelty of this paper lies in the fusion of various feature
engineering techniques, encompassing both feature extraction
and reduction, in the classification of breast masses. The
study then proceeds to compare the effectiveness of different

scenarios. The corresponding sections illustrate the methods,
results and discussion and end with the conclusion.

2. Materials and methods

The approach outlined in this paper is depicted in Fig. 1. It
commences with the extraction of deep features using widely
recognized convolutional neural networks. The most critical
features are selected using 10 distinct feature selection tech-
niques using a Gaussian support vector machine classifier to
differentiate between benign and malignant breast masses.

2.1 Database
The study utilized the Digital Database for Screening
Mammography (DDSM) [4], which can be accessed through
the following link: https://www.kaggle.com/datasets/
tommyngx/breastcancermasses. This dataset comprises
both benign and malignant tumors found in mammograms.
Initially, 2188 mass images were collected and incorporated
into the dataset. Subsequently, the images underwent
preprocessing, which included contrast-limited adaptive
histogram equalization and data augmentation. Following
these processes, the dataset expanded to contain 13,128
images, consisting of 5970 benign and 7158 malignant
mammogram images. Each image was standardized to a size
of 227 × 227 pixels. Fig. 2 shows sample of benign and
malignant masses [4].

2.2 Deep learning models
This study employed 12CNN structures for training and testing
breast mammogram images. The transfer learning algorithm
was utilized to extract features for training and testing from
each network’s last fully connected layer. Two features were
extracted for each of the two classes from every CNN model.
The structure of each network is individually explained in the
corresponding section. The dataset was divided into 70% for
training and 30% for testing for each network, with a validation
subset extracted from the training data, comprising 10% of the
entire training set. Brief descriptions of each utilized network
are provided in the corresponding sections.

2.2.1 Efficient Net
In 2019, Mingxing Tan and Quoc V. Le introduced
EfficientNet-B0. The aim of this architecture is to achieve
a balance between model accuracy and computational
efficiency. Using a compound scaling method based on a
compound scalar, EfficientNet-B0 achieves state-of-the-art
performance while being computationally efficient; this
network is a part of the B0 family (B0 to B7). Mainly,
EfficientNet-B0 is made of 237 layers, which can be
summarized as an input layer, depth-wise convolution layer,
batch normalization, activation function block, global average
pooling layer and rescaling parameters. This combination
succeeds in achieving a top-1 accuracy of 77.1% and a top-5
accuracy of 93.3%. EfficientNet-B0 demonstrates remarkable
accuracy comparable to larger and more resource-intensive
models in training and inference. However, highly specialized
tasks with high precision may still benefit from more
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FIGURE 1. The proposed approach in classification between benign and malignant breast masses. CNN: Convolution
Neural Network; VGG: Visual Geometry Group; ICA: Independent component analysis; DGUFS: Dependence Guided
Unsupervised Feature Selection; lasso: Least Absolute Shrinkage and Selection Operator; ilfs: Infinite Latent Feature Selection;
PCA: Principal Component Analysis; cfs: correlations based feature selection.

FIGURE 2. Sample of images in database. (A) benign, (B) malignant.

complex architectures, and, like any model, EfficientNet-B0’s
effectiveness can be affected by the specifics of the dataset
[15].

2.2.2 Shuffle Net

Xiangyu Zhang et al. [16] introduced Shuffle Net in 2017.
It has been designed to acquire high performance while sig-
nificantly lowering computational complexity, making it ideal
for resource-constrained environments. Essentially, Shuffle
Networks by shuffling channels, allowing efficient group con-
volution operations. As part of Shuffle Net, channels are
shuffled, which divides them into groups and alters their or-
der within each group. By doing so, information can be
exchanged between different groups while minimizing com-
putational costs. “Shuffle Units” are the fundamental building
blocks of the system, consisting of a pointwise convolution, a
channel shuffling, and a depthwise convolution. It optimizes

the flow of information and the computation of data; this
network consists of a convolutional layer, max-pooling and
a varying number of stages that contain varying numbers of
shuffle units. ShuffleNet is known for its impressive accuracy
given its low computational requirements, but if computational
resources are not a constraint, more elaborate architectures
may be able to achieve even higher accuracy. ShuffleNet was
able to reach the top-1 error rate of 7.8% on the ImageNet
classification task [16].

2.2.3 Dense Net201

Presented by GaoHuang, Zhuang Liu, Laurens van derMaaten
and Kilian Q. Weinberger in 2017, The DenseNet201, con-
sisting of 201 layers, obtains additional inputs from layers
preceding them and passes their respective feature maps to
subsequent layers. The method used is concatenation. Each
layer receives “collective knowledge” from the previous lay-
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ers. In general, DenseNet consists of the input layer, the
initial convolutional layer with batch normalization and ReLU
activation, dense blocks consisting of densely connected con-
volutional and concatenation layers, transition layers, global
average pooling, and the fully connected layer. The benefits
of this architecture are numerous. As a result of its remarkable
accuracy, DenseNet201 rivaled more complex image classifi-
cation models while remaining computationally efficient with
a top-1 error rate of 22.58% and a top-5 error rate of 6.34%. As
with any architecture, DenseNet201 has its limitations. The
extensive connectivity of the system can cause high memory
consumption during training. Additionally, some instances
might cause redundant feature propagation due to the dense
connections [17].

2.2.4 Xception Net
François Chollet introduced Xception in 2017. In principle,
standing for “Extreme Inception”, Xception utilizes depth-
wise separable convolutions to enhance feature extraction and
computational efficiency. The architecture is based on two
main principles: Depthwise Separable Convolutions, which
divide the convolution operation into two steps: depthwise
convolution followed by pointwise convolutions, significantly
reducing computational requirements. With a linear bottleneck
structure and depthwise separable convolutions and residual
connections, this design optimizes information flow while
minimizing parameters and computations. In addition to a
customizable depth that opens the door for variations like
Xception-41, Xception-65 and more. Xception reached a top-
1 accuracy of 79% and a top-5 accuracy of 94.5% on the
ImageNet classification task [18].

2.2.5 Inception-v3
After the success of GoogLeNet, another evolutional version of
it appeared called Inception-v3, brought by Christian Szegedy,
Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens and Zbig-
niew Wojna in 2016. With a depth of 48 layers, the primary
advantage of Inception-v3 over its predecessor is its improved
depth and complexity. Furthermore, Inception-v3 introduces
auxiliary classifiers as regularizes to increase the stability and
effectiveness of gradient propagation. As well as batch nor-
malization, it also improves convergence during training and
boosts performance overall. To sum it up, Inception V3’s
major modifications include smaller convolutions, asymmetric
convolution from spatial factorization, the use of auxiliary
classifiers, and efficient reduction of grid size. Inception-v3
achieved a top-1 error rate of 17.2% and a top-5 error rate
of 3.58% when compared to participants in (ImageNet Large
Scale Visual Recognition Challenge) ILSVRC 2012. There
are still some challenges associated with Inception-v3, despite
its advantages. The deeper and more complex it is, the more
computational resources it needs [19].

2.2.6 ResNets
In 2015, Kaiming He et al. [20] developed ResNet, a foun-
dational architecture for deep learning. The ResNet consists
of several residual blocks, mainly consisting of two 3 × 3
convolutional layers, each followed by batch normalization
and a ReLU activation, eachwithmultiple convolutional layers

and a shortcut connection that skips some layers. As a result
of these shortcut connections, the network can learn residual
functions, which capture the differences between the desired
output and the current prediction. The main advantage of
ResNet is that it can train very deep networks without compro-
mising performance. With residual connections, gradient flow
becomes easier, allowing networks with hundreds of layers to
be trained successfully. A variety of computer vision tasks
can be solved using ResNet, due to its strong generalization
capabilities. When applied to high-resolution images or de-
vices with limited resources, ResNet may encounter mem-
ory consumption challenges. Moreover, residual connections
might not benefit the architecture’s initial layers as much,
potentially leading to redundant computations. ResNet-18
has 18 layers comprising a convolutional layer, max-pooling
and four stacks; each stack contains multiple residual blocks.
While ResNet-50 and ResNet-101 have 50 and 101 layers,
respectively. The only difference is in-depth, design, shortcut
connections and several blocks. Regarding performance, on
ImageNet validation, ResNet-18, ResNet-50 and ResNet-101
achieved a top-1 error rate of 27.88%, 22.85% and 21.75%,
respectively [20].

2.2.7 GoogLeNet
Consisting of 22 layers, GoogLeNet won the ILSVRC 2014
[9] and introduced the concept of inception by C. Szegedy et
al. [21]. The main advantage of the inception lies in applying
different convolutional filters with different sizes in parallel
and stacking their output to generate the net output. In addition,
GoogLeNet uses 1× 1 convolution and global average pooling
that allows it to produce much deeper architecture. These 22
layers mainly consist of convolution with ReLU activation,
max pool layer, inception, average pool layer, dropout reg-
ularization, linear and softmax classifier. GoogLeNet stands
in the field of classification with a top-5 error rate of 6.67%
on ImageNet. It is important, however, to take into account
some drawbacks. It is possible for the complexity of the
architecture to result in an increase in memory consumption
and computational requirements [21].

2.2.8 VGG nets
VGG16 and VGG19 were proposed by the Visual Geometry
Group (VGG) at the University of Oxford in 2014. Simple
yet efficient in design, VGG16 comprises 16 layers, 13 of
which are convolutional layers, and three are fully connected
layers. Alternatively, VGG19 consists of 19 layers, including
16 convolutional layers and three fully connected layers. The
convolutional layers contain 3 × 3 filters and max-pooling
layers of 2 × 2 pools distributed as alternating patterns, while
the fully connected layers act as classifiers; all hidden layers in
VGG architecture use ReLU, this unambiguous design allows
a very high performance due to its ability to learn complicated
features. However, this depth of architecture might introduce
overfitting; another problem of this design is the long training
time and large model size [22].

2.2.9 AlexNet
As the ILSVRC (ImageNet Large Scale Visual Recognition
Competition) winner in 2012. AlexNet was marked as a great
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breakthrough in the realm of deep learning; this state-of-the-art
was first introduced by Alex Krizhevsky, Ilya Sutskever, and
Geoffrey Hinton in 2012 [23]. It consists of five convolutional
layers and three fully connected layers. Using Rectified Linear
Units (ReLUs) andMultiple Graphics ProcessingUnit (GPUs),
AlexNet achieved a relatively short training time; the error
rate was greatly reduced after using a local normalization
scheme and overlapping pooling. Even though AlexNet has
60 million parameters, which may introduce overfitting in
case of insufficient training examples, AlexNet overcomes this
problem by data augmentation and using a dropout technique
that involves setting each hidden neuron with probability 0.5
output to zero. In this way, “dropped out” neurons do not
participate in the forward pass or the backpropagation. A top-1
error of 47.1% and a top-5 error of 28.2%were achieved by the
best model in the 2010 version of the ImageNet competition.
Compared to this, AlexNet had a 37.5% top-1 error rate and a
17.0% top-5 error rate [24].

2.3 Features reduction techniques
Recently, rapid development in the scientific field, especially
the newmeasurement technologies and instruments, resulted in
an exponential increase in data qualitatively and quantitatively,
mainly increasing features will lead to the curse of dimension-
ality, in addition, more features will require more data points
to represent this data that will consume a very large amount of
time and computational resources, therefore the necessity of
features reduction methods arise [25].
Dimensionality reduction can be executed through two dis-

tinct approaches: one involves retaining only the most perti-
nent variables from the initial dataset, referred to as feature
selection, while the other involves capitalizing on input data re-
dundancy to identify a smaller set of novel variables, each rep-
resenting a combination of the input variables and essentially
carrying the same information as the original variables. This
latter technique is known as dimensionality reduction [26].
The subsequent section outlines the most widely recognized
techniques for feature reduction, the corresponding section
describes some of feature reduction and selection methods.

2.3.1 Principal component analysis
Principle component analysis (PCA): a statistical approach
that can sum up the data content by converting a large set of
variables into a small set while keepingmost of the information
of the large set [26].
We can express themathematical process of computing PCA

as follows: first, we remove the classes from the dataset, then
we compute the mean of each attribute, and afterward, we
compute the covariance matrix for the whole dataset using the
formula below:

cov (X,Y ) =
1

n

n∑
i=1

(x− x̄)(y − ȳ)

Where cov(X,Y ) represent the covariance between X and Y
attributes.
x and y are the instances of X and Y respectively.

x̄ and ȳ the mean of X and Y respectively.
n the number of instances.
The next step is to compute the eigenvectors and the corre-

sponding eigenvalues from the covariance matrix by solving
the following equation:

det (A− λI) = 0

Where A is the covariance matrix, λ is the eigenvalue, I is
an identity matrix, and the eigenvalues of A are roots of the
characteristic equation.
The resulting eigenvectors are sorted by decreasing eigen-

values, and we choose a certain number of eigenvectors with
the largest eigenvalues, these eigenvectors will form matrixW,
which will be used to find our new subspace and transform the
samples into it using the equation:

y = W
′
× x

WhereW′ is the transpose of matrixW.

2.3.2 Independent component analysis (ICA)
Independent component analysis (ICA) is a statistical tech-
nique designed to explore sources, from sets of random vari-
ables and check if these sources are independent [27]. ICA
has several applications in unsupervised learning and clas-
sification studies, where it has superiority in extracting in-
dependent features from the original feature dataset, which
reduces the dimensionality of the feature space and improves
classification accuracy effectively. In mathematical terms,
the original features can be expressed as (X1, X2, … Xn).
These features come from different sources such as (S1, S2,
Sn); the combination is x equals cap A. A represents the
mixing matrix. This equation can be written as y = Wx,
where W represents the demixing matrix and y stands for the
independent component. The ICA’s components are derived
using the fastICA algorithm. Moreover, the set of extracted
components (y = y1, y2, ..., yn) is characterized by their non-
Gaussian and maximally independent nature. One common
method for measuring this independence is using the kurtosis
measure adopted in this paper to rank the extracted independent
components [28].

2.3.3 Wrapper methods
Wrapper methods select features based on a machine learn-
ing algorithm that is fitted to a particular dataset. A greedy
search approach is used to evaluate all possible combinations
of features against the evaluation criteria. Evaluation criteria
are simply performance measures that vary according to the
problem type, such as accuracy, precision for classification, or
R-squared for regression [29]. This paper employed the most
commonly used techniques under theWrapper methods, which
are based backward.

2.3.4 Chi-square test
The chi-square test is applied to determine the independence
between two variables; in other words, the chi-square hypoth-
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esis that variables A and B are independent. Then, test this
hypothesis by calculating the sum of differences between the
observed count and the expected count of the variables based
on the following equation.

χ2 =

c∑
i=1

r∑
j=1

(oij − eij)
2

eij

Supposing A has c distinct values and B has r distinct
values. The data tuples described by A and B can be shown
as a contingency table, with the c values of A making up the
columns and the r values of B making up the rows.

eij =
count (A = ai)× count (B = bi)

n

Where n is the number of data tuples, count(A=ai) is the
number of tuples having values ai for A, and so on for B. If the
calculated chi-square value (χ2) is less than the significance
level for (r – 1) × (c – 1) degree of freedom, then the chi-
square hypothesis is true; otherwise, the hypothesis is rejected,
whichmeans the null hypothesis is rejected and the features are
dependent [30].

2.3.5 LASSO method
The Least Absolute Shrinkage and Selection Operator
(LASSO) is a strong method that mainly consists of
regularization and feature selection. First, the LASSO
method calculates the sum of the absolute values of the model
parameters. The sum is then constrained, but the sum must
be less than a fixed value called the upper bound. To make
this possible, a process called shrinking or regularization is
applied. As a result, some of the coefficients of the regression
variables will be penalized and shrunk to zero; afterward, the
remaining non-zero coefficient will be selected to be part of
the model [31].
For more explanation, assuming the LASSO regression

problem, the generalized cost function in LASSO regression
can be written as follows:

E (β) + λR(β)

Here, cap E of beta is the error rate, cap R of beta is the reg-
ularization term, and lambda is the parameter that determines
the power of the pena the shrinking increases [32].

2.3.6 ReliefF
ReliefF is capable of handling multiple class problems, and
it is also able to deal with noisy and incomplete data. Reli-
efF depends on determining the most significant attributes by
finding out how efficiently the attribute values can separate
close instances to the same or different class. We can sum the
algorithm as the following steps: first, the algorithm selects
a random instance called Ri then search in a k number of
the nearest neighbors, k neighbors from the same class of
the neighbors’ Hi called nearest hits, then another k nearest

neighbors from each of the different classes called nearest
misses Mi. Then the algorithm calculate a parameter called
quality estimation W[A] for all the attributes A based on their
instance, nearest Hits, nearest misses [33].

2.3.7 Minimum redundancy maximum
relevance algorithm

Minimum redundancy maximum relevance algorithm
(MRMR) is aimed at searching for the essential set of features
by minimizing the redundancy of the features set while at the
same time maximizing the relevance of a certain feature to
predict the right output (class in case of classification), assume
feature Xi, the importance of Xi based on MRMR algorithm
can be expressed as:

fMRMR(Xi) = I(Y,Xi) − 1

|S|
∑

Xs∈S

I(Xs, Xi)

Y in this expression represents the class label, the chosen
features are expressed as S, and |S| is the count of features,
while I(Y, Xi) is a function that describes the common or shared
information, this method will search for the highest fMRMR

score for each feature and rank the features based on that score
to select the features with the highest score [34, 35].

2.3.8 Infinite latent feature selection

The Infinite Latent Feature Selection (ILFS) method can be
put in 3 stages. First is the preprocessing stage starts with
breaking the dataset into vectors. Each vector represents the
distribution of features, and the possible unique values of that
vector are huge therefore, the process of mapping the set of
values into smaller and manageable groups commonly known
as tokens is necessary, the process of assigning tokens to the
features is called discriminative quantization, the second step is
to weight the graph based on relevance and other conditional
probabilities, lastly, the thirst step begins after obtaining the
matrix from the previous procedure, its geometric series is
calculated in order to expand its path into infinity [36, 37].

2.3.9 Pairwise correlations feature selection

The process of choosing a subset of features from a dataset via
examination of the pairwise correlations between the features
is known as pairwise correlation-based feature selection. In
order to enhancemodel performance and lower dimensionality,
it seeks to discover the most illuminating and least redundant
features.

First, the pairwise correlation is computed for each pair of
features in the dataset. Pearson’s correlation coefficient, which
assesses the linear relationship between two variables, is the
often utilized correlation coefficient. It has a range of −1 to 1,
with 1 denoting a high positive correlation, −1 a strong neg-
ative correlation, and 0 denoting no association. Once we’ve
located them, we can evaluate the non-redundant features’
significance or relevance to the target variable [38].
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2.3.10 Dependence guided unsupervised
feature selection
Dependence Guided Unsupervised Feature Selection
(DGUFS) is one of the feature reduction methods that is
used to determine the most important features by first taking
the measurement of pairwise dependencies using correlation
coefficients, mutual information or other statistical methods,
then, a rank will be assigned for the features based on the
dependence test; afterward the most important features will be
selected from the ranking [39].

2.4 Support vector classifier
SVM is a supervised machine learning technique that can be
used for classification as well as regression. SVMs locate a
hyperplane in the data that divides the various classes or values.
The hyperplane is selected in such a way that the difference
between the two classes is maximized.
SVMs are useful for machine learning tasks since they are

highly resistant to noise and outliers and can classify data in
high-dimensional domains.
One popular option for non-linear classification and re-

gression applications is to use SVM with a Gaussian kernel.
The Gaussian kernel implicitly maps the entered data to a
high-dimensional feature space, enabling SVMs to simulate
complex decision boundaries effectively.
The model seeks to identify the ideal hyperplane that max-

imizes the margin among distinct classes in the feature space
while employing SVMwith a Gaussian kernel. Next, new, un-
observed data points are classified using the decision function.
The decision function predicts the class label of an input point
by assigning it a positive or negative value.
The sigma parameter in the Gaussian kernel function con-

trols how quickly the similarity or distance measure decreases
as the separation between the two values increases. A decision
boundary that is smoother and has a bigger value of sigma has
a narrower kernel, whereas a decision boundary that is more
complicated has a larger value of sigma.
TheGaussian kernel function using sigma (σ) can be defined

mathematically as follows:

K (x, y) = e−
|x−y|2

2σ2

Where σ is the sigma parameter, |x − y|2 is the squared
Euclidean distance of x and y, and the input data points are
x and y are the label [40, 41].

3. Results & discussion

For every convolutional neural network, the final fully con-
nected layer is substituted with a new one by adjusting the
number of output features to match the desired classes, a well-
established technique in deep learning known as transfer learn-
ing. The remaining layers remain unaltered. Subsequently,
each network undergoes training using the Adam optimizer,
iteratively updating weights until convergence is achieved.
The training employs mini-batch sizes 32, a maximum of 10
epochs, and an initial learning rate of 0.001. Early stopping is

implemented during training to prevent overfitting. This iden-
tical procedure is applied across all the mentioned networks.
The training features are derived from each network’s final

fully connected layer, and model evaluation is conducted using
an unseen test dataset. Test features are also extracted. Various
feature reduction and selection algorithms are employed to
select the most representative features. The resulting output is
fed into a Gaussian support vector machine classifier (SVM).
The subsequent results elucidate the performance of the SVM
when combining deep features and reduction techniques.
The provided table outlines the top 10 relevant features

obtained through the feature above reduction and ranking tech-
niques.
Table 1 showcases ten feature reduction techniques, out-

lining the sequence of features for each method from the
most representative to the least. The primary goal in singling
out these top 10 attributes is to ensure consistent accuracy,
even when the number of features is augmented. Fig. 3,
on the other hand, delineates the utilization of deep features
from each mentioned CNN across all reduction methods by
emphasizing the most crucial features. The X-axis represents
the CNN names, while the y-axis illustrates the frequency of
incorporating the extracted network in all feature reduction
methods.
Fig. 3 illustrates the efficacy of DenseNet in extracting

the most pertinent features for breast masses, having been
employed 11 times across all reduction methods. Following
closely are ResNet18 and Inceptionv3, each utilized ten times,
and subsequently, GoogleNet used nine times. Conversely,
both Shuffle and AlexNet demonstrate a limitation in revealing
the most representative features of breast tumors. This under-
scores the advantage of the proposed approach in attaining op-
timal representative features by leveraging various CNNs with
diverse structures and approaches to extracting deep features
from mammogram images.
The synergy between deep features and feature reduction

techniques distinguishes pertinent and redundant features.
This process diminishes the intricacy of the machine learning
model and minimizes the risk of overfitting. The Gaussian
Support Vector Machine (SVM) was chosen to evaluate the
effectiveness of each method in creating a robust model for
distinguishing between benign and malignant breast masses.
The accompanying figure illustrates the test confusion matrix
for each of these methods.
Fig. 4 demonstrates the superiority of our approach across

all methods, with the best results achieved using the ReliefF
method. The selected features from this method are detailed in
Table 1, starting with the most significant feature, the AlexNet
deep attribute, and concluding with the least significant, repre-
sented by the ResNet18 features. This method excluded deep
features from VGG16, Xception and ShuffleNets. The highest
accuracy achieved was an impressive 99.9%, with a sensitivity
of 99.9%, specificity of 100%, precision of 99.9%, an F1-score
of 1, and a negative predictive value of 99.9%.
The corresponding Table 2 and Fig. 4 summarize the results

obtained for all reduction methods, including accuracy, sensi-
tivity, specificity and precision.
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TABLE 1. This is a sample table caption.

Method Ranked Features

Wrapper ResNet-50 VGG16 Inception-v3 Dense Net201 Efficient Net Xception Net GoogLeNet Xception Net ResNet-101 VGG19

lasso Dense Net201 Shuffle Net ResNet-18 ResNet-101 Dense Net201 Shuffle Net Inception-v3 ResNet-101 GoogLeNet Inception-v3

ReliefF AlexNet Efficient Net ResNet-50 VGG19 Inception-v3 GoogLeNet Dense Net201 Dense Net201 ResNet-101 ResNet-18

cfs ResNet-50 VGG16 Xception Net VGG19 Efficient Net GoogLeNet ResNet-18 ResNet-18 Inception-v3 Inception-v3

ilfs ResNet-18 ResNet-50 ResNet-50 Dense Net201 VGG16 VGG16 VGG19 AlexNet VGG19 Dense Net201

PCA Inception-v3 ResNet-18 GoogLeNet Xception Net ResNet-50 VGG16 Inception-v3 Dense Net201 Dense Net201 AlexNet

mRMR ResNet-18 Efficient Net ResNet-18 Xception Net AlexNet VGG16 Efficient Net VGG19 Dense Net201 GoogLeNet

chi-Square Efficient Net Efficient Net GoogLeNet GoogLeNet Inception-v3 Inception-v3 ResNet-101 ResNet-101 ResNet-18 ResNet-18

ICA GoogLeNet ResNet-50 ResNet-101 GoogLeNet Dense Net201 VGG19 AlexNet VGG16 ResNet-50 Shuffle Net

DGUFS Dense Net201 Dense Net201 Xception Net VGG19 ResNet-50 ResNet-50 ResNet-18 Inception-v3 ResNet-101 ResNet-18

VGG: Visual Geometry Group; ICA: Independent component analysis; DGUFS: Dependence Guided Unsupervised Feature Selection; lasso: Least Absolute Shrinkage and Selection
Operator; ilfs: Infinite Latent Feature Selection; PCA: Principal Component Analysis; cfs: correlations based feature selection.
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FIGURE 3. The frequency of using deep features from each network in all reduction techniques. VGG: Visual Geometry
Group.

As indicated in Table 2, the mRMR method yielded the
highest precision, followed by ReliefF. Conversely, ReliefF
and Warper exhibited the most heightened sensitivity. More-
over, mRMR, along with ReliefF, achieved the best speci-
ficity. Ultimately, ReliefF attained the highest accuracy at
99.9%. Across all methods, ReliefF consistently demonstrated
superior accuracy, top specificity, noteworthy sensitivity and
precision.
Fig. 5 displays the outcomes achieved through the suggested

methodology. The most favorable results are evident when
utilizing features selected by the ReliefFmethod. The rationale
behind this lies in its capability to prioritize optimistic features,
choosing the top ten from diverse sources, including two fea-
tures from the DenseNet and the remaining from 8 distinct
networks. This amalgamation of varied features contributes
to a more precise characterization of the tumor’s nature, as
demonstrated by the Gaussian support vector machine classi-
fier.
For further analysis, the Receiver Operating Characteristic

curve (ROC) is depicted in Fig. 6. The ROC curves illustrate
the relationship between all feature selectionmethods’ true and
false positive rates.
All the preceding ROC curves clearly illustrate that the deep

features consistently achieve a high Area Under the Curve
(AUC) score of 1. This underscores the effectiveness of deep
learning in extracting pertinent features for breast masses,
particularly when combined with feature selection to identify
the most representative ones. This suggests the potential of
considering themodel for deployment as software in healthcare
units.
A comprehensive comparison with the most recent literature

on breast mass classification was conducted to evaluate the
proposed method’s effectiveness further. Table 3 compares our
work with existing literature, focusing on accuracy and AUC
scores.
The table shows that our proposed approach achieves the

highest accuracy among the compared methods. This indicates
the potential for developing the model into a software appli-
cation for implementation in healthcare sectors, which aims
to reduce false positive cases. Such an advancement would
significantly enhance the breast cancer diagnosis process and
subsequent treatment. Many studies employing feature engi-
neering techniques to improve the diagnosis approach [28, 40,
41].

4. Conclusions

Breast cancer stands as one of the most prevalent and poten-
tially life-threatening conditions affecting women worldwide,
emphasizing the critical importance of early detection and
appropriate treatment. Mammogram images serve as a primary
tool for the timely identification of breast tumors. An inac-
curate diagnosis can significantly increase the risk of cancer
metastasizing to other organs, such as the lungs. Extracting
relevant features is vital in improving detection through deep
learning techniques that extract attributes representing malig-
nant and benign tumors.
Integrating deep learning with feature selection methods is

pivotal in identifying essential features while reducing dimen-
sionality to retain the most impactful ones. Coupled with a
Support VectorMachine (SVM) classifier, this approach yields
a robustmodel. This research introduces a software application
that employs deep learning techniques to classify mammogram
images as benign or malignant based on inherent features.
Furthermore, feature selection algorithms are employed to
isolate the most critical attributes. Moreover, utilizing the
entire image for diagnosis purposes enhances accuracy by
incorporating the surrounding region into the diagnostic pro-
cess and capturing the most relevant features, considering the
impact of tumors on the neighboring areas [42, 43].
Various feature selection approaches are exploited, with

ReliefF emerging as the most suitable choice. The results
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FIGURE 4. The test confusion matrices of SVM using (a) cfs, (b) CHI, (c) DGUFS, (d) ICA, (e) ilfs, (f) lasso (g) mRMR,
(h) PCA, (i) ReliefF, (j) warpper.

TABLE 2. The obtained results for all feature reduction methods.

Reduction_Method Precision sensitivity specificity Accuracy

CFS 97.80% 94.50% 98.10% 96.40%

CHI 99.00% 96.50% 99.10% 97.70%

DGUFS 98.80% 99.50% 99.00% 99.20%

ICA 99.40% 98.40% 99.50% 99.00%

ILFS 99.80% 99.70% 99.90% 99.80%

mRMR 100.00% 98.30% 100.00% 99.20%

Lasso 99.40% 99.70% 99.50% 99.60%

PCA 99.40% 99.70% 99.50% 99.60%

ReliefF 99.90% 99.90% 100.00% 99.90%

Warpper 95.10% 99.90% 96.10% 97.70%

DGUFS:DependenceGuidedUnsupervised Feature Selection; ICA: Independent component analysis; ILFS: Infinite
Latent Feature Selection; Lasso: Least Absolute Shrinkage and Selection Operator; PCA: Principle component
analysis; CFS: Correlation-based Feature Selection; CHI: Chi-square Test.
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FIGURE 5. The results using various reduction methods. DGUFS: Dependence Guided Unsupervised Feature Selection;
ICA: Independent component analysis; ILFS: Infinite Latent Feature Selection; Lasso: Least Absolute Shrinkage and Selection
Operator; PCA: Principle component analysis; CFS: Correlation-based Feature Selection; CHI: Chi-square Test.

FIGURE 6. The test ROC of SVM using (A) cfs, (B) CHI, (C) DGUFS, (D) ICA, (E) ilfs, (F) lasso, (G) mRMR, (H) PCA,
(I) ReliefF, (J) warpper. ROC: Receiver Operating Characteristic; AUC: Area under the curve.
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TABLE 3. Comparison with literature.
Ref# Method Results
[7] 2020 Deep CNNs (Alex and Google Nets) AlexNet (Accuracy 100%)
[8] 2021 A novel multi-level global-guided branch-attention

network (MGBN) for mass classification
AUC (0.8375)

[9] 2021 YOLO based method Detection accuyracy 95.7%, classification accuracy
74.4%

[10] 2021 Deep learning for feature extraction Accuracy 96.26%
[12] 2022 Improved Extreme Learning Machine with Deep

Learning
accuracy is 97.193%

[13] 2022 Dense Tissue Pattern Characterization Using Deep
Neural Network

accuracy 92.3%

[14] 2023 FSE-Net: feature selection and enhancement network accuracy for CBIS-DDSM 80.6%
Proposed Method Using 12 deep learning structures, with 10 feature

selection methods and Machine learning Classifier
Accuracy 99.9%, AUC 1

AUC: Area under the curve.

underscore themodel’s remarkable ability to effectively handle
unseen data (test data), achieving an accuracy rate of nearly
100%. The findings of this research suggest the potential adop-
tion of this technologywithin the healthcare sector, particularly
considering the substantial number of images involved and
the reliability it offers in the mammogram image diagnosis
process.
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