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Abstract

Endometrial cancer (EC) is an epithelial malignant tumor in women. Copine-1 (CPNEI)
is an oncogene implicated in many tumors. Nevertheless, the influence of CPNE! on EC
has not been fully determined. This study aims to determine the impact of CPNE/ on EC.
In this research, User-friendly Analysis of Cancer Gene Expression Data (UALCAN)
was used to analyze CPNE ] expression in uterine corpus endometrial carcinoma (UCEC)
and its effect on patient survival probability. The levels of CPNEI, hexokinase 2
(HK2), phosphorylated Akt kinas/Akt kinas (p-AKT/AKT), and c-myc were examined
by western blot or quantitative reverse transcription polymerase chain reaction (qRT-
PCR). Cell proliferation was assessed by Cell Counting Kit-8 (CCK-8) assay and
clone formation assay. The glucose consumption, lactate production, and adenosine
triphosphate (ATP) levels in Ishikawa and KLE cells were measured by commercial kits.
We found that the expression of CPNE1 was upregulated in EC and closely related to the
development of EC. Silencing CPNE [ suppressed proliferation and aerobic glycolysis of
EC cells. Silencing CPNE! inhibited AKT/c-myc pathway in EC cells. Downregulation
of CPNE]1 also inhibited proliferation and aerobic glycolysis of EC cells via regulating
the AKT pathway. In conclusion, CPNE1 plays an oncogenic role in EC and silencing
CPNEI reduces proliferation and aerobic glycolysis of EC cells through modulation of
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the AKT pathway.
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1. Introduction

Endometrial cancer (EC) is an epithelial malignant tumor
found in the lining of the uterus [1]. EC ranks 15th among
global malignancies in developed countries but is one of the
most common cancers in developing countries. Its incidence
has been rising due to increasing rates of obesity, which is
a major risk factor [2]. It primarily affects postmenopausal
women, with the majority of cases diagnosed in women aged
50-70 years. However, around 20-25% of cases occur in
premenopausal women, and 2-5% in women under 40 [2].
Surgical removal and postoperative adjuvant treatment of EC
are well-established, including hysterectomy and conventional
platinum/paclitaxel-based chemotherapy [3, 4]. Nevertheless,
women with recurrent or advanced EC have a poor response
rate to conservative treatment (non-surgical approaches aimed
at preserving the uterus, like hormonal therapy) and poor
clinical prognosis [5]. Therefore, it is still essential to further
discover targeted therapeutic agents for EC patients based on
an accurate understanding of the molecular pathogenesis of
EC.

Copine-1 (CPNE]) is a gene located on human chromosome
20 and encodes for a Calpain-5 binding protein. CPNE]

codes for a calcium-binding protein that plays an important
role in cell signaling and cell processes [6]. CPNEI has
been identified as an oncogene in few human cancers [7, 8].
The expression of CPNE] is increased in lung and prostate
cancer, and upregulated CPNEI promotes the development
and metastasis of lung cancer cells [9, 10]. CPNEI can activate
the AKT signaling pathway, which plays a vital role in glucose
metabolism and cell energy homeostasis [11]. However, the
role and mechanisms of CPNE1 in EC remain unclear.

c-myc is a crucial transcription factor associated with a
variety of cell functions, including cell proliferation and energy
metabolism [12]. By modulating these cell functions, c-myc is
linked with tumorigenesis and stimulates the advancement of
tumors [13]. It has been demonstrated that silencing upstream
genes of the c-myc pathway can inhibit glycolytic-mediated
tumor progression [ 14]. AKT modulates many cell processes,
including cell proliferation, glycolysis and angiogenesis [15—
17]. It is a downstream signal of phosphatidylinositol 3 kinase
(PI3K) [18, 19]. Reduction of aerobic glycolysis mediated
by AKT-c-myc signaling can inhibit tumor progression [20].
Therefore, we speculate that the AKT/c-myc signaling path-
way plays a vital role in the advancement of EC.

Herein, UALCAN was utilized for the analyses of CPNE1
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expression and clinical relevance in uterine corpus endome-
trial carcinoma (UCEC). The effects of CPNE1 on EC cell
proliferation and aerobic glycolysis were confirmed with in
vitro experiments. This study verified the influence of CPNEI
on EC and established its utility as a prognostic marker and
therapeutic target.

2. Materials and methods

2.1 Bioinformatics analysis

UALCAN (http://ualcan.path.uab.edu/) was utilized to assess
the expression and clinically related information of CPNE1
in UCEC. Gene Expression Profiling Interactive Analysis
(GEPIA) (http://gepia.cancer-pku.cn/detail.php) was applied
to perform correlation analysis.

2.2 Cell culture

Human normal endometrial stromal cells (hESC cells) and EC
cell lines (Ishikawa, KLE, RL95-2, and AN3 CA) were pur-
chased from Genechem (Shanghai, China). Dulbecco’s mod-
ified Eagle’s medium/Nutrient Mixture F-12 (DMEM/F12;
D0697, Sigma-Aldrich, St. Louis, MO, USA) was utilized
to culture the hESC cells. The EC cell lines were cultured
in DMEM (Sigma) containing 10% fetal bovine serum (FBS;
TMS-016, Sigma-Aldrich, St. Louis, MO, USA) in 5% carbon
dioxide (CO5) at 37 °C.

2.3 Cell transfection

Small interfering RNA (siRNA) targeting CPNE1 (si-
CPNEI1#1 and si-CPNE1#2) and control (si-NC) were
synthesized by Sangon Biotech (Shanghai, China).
Lipofectamine 2000 (SITRAN-RO; 11668-027, Thermo
Fisher Scientific, Waltham, MA, USA) was used for
transfection following the manufacturer’s instructions. In
some rescue experiments, EC cells were treated with SC79
(an AKT activator; 0.2 pg/mL; A424572, Sangon, Shanghai,
China) for 24 h prior to transfection to activate the AKT
pathway.  All cell functions were evaluated 48 h after
transfection.

2.4 Western blot

The proteins of cells were extracted using lysis buffer (23227,
Invitrogen, Carlsbad, CA, USA). Sodium dodecyl sulfate poly-
acrylamide gel electrophoresis (SDS-PAGE) was applied to
separate the proteins, which were transferred to a polyvinyli-
dene fluoride (PVDF) membrane. After blocking, the mem-
branes were incubated overnight at 4 °C with primary antibod-
ies against CPNEI (ab272682; 1:1000; Abcam, Cambridge,
MA, USA), Hexokinase II (HK2; ab209847; 1:1000; Abcam,
Cambridge, MA, USA), p-AKT (4060; 1:1000; Cell Signaling
Technology, Boston, MA, USA), AKT (9272; 1:1000; CST,
Cambridge, MA, USA), c-myc (ab32072; 1:1000; Abcam,
Cambridge, MA, USA), and [S-actin (ab8226; 1:1000; Abcam,
Cambridge, MA, USA). The following day, the membranes
were exposed to goat anti-rabbit Immunoglobulin G (IgQG)
(ab205718; 1:2500; Abcam, Cambridge, MA, USA) for 2 h.
Protein signals were detected using an ECL kit (41106004,

Sigma, St. Louis, MO, USA). Protein expressions were semi-
quantified using Image J software.

2.5 Quantitative reverse transcription
polymerase chain reaction (qRT-PCR)

RNAs was extracted from Ishikawa and KLE cells using TRI-
70l (9109, TaKaRa, Dalian, Liaoning, China) and then reverse
transcribed into cDNA using the PrimeScript RT Master Mix
(RR0O36A; TaKaRa, Dalian, Liaoning, China). qRT-PCR was
subsequently performed using the SYBR® Premix Ex Taq™
quantitative kit (RR420A, TaKaRa, Dalian, Liaoning, China)
on an ABI7500 system (4397808, Thermo Fisher Scientific,
Waltham, MA, USA). B-actin served as the reference gene for
normalization, and relative gene levels were calculated using
the 27 22C* method. Please refer to Table 1 for the primer
sequences.

TABLE 1. Primers for qRT-PCR.

Name Primers for qRT-PCR (5'-3")
CPNE1
Forward TGCCTCGTACTTCATGCTGTT
Reverse TCCATGGCCTCAAAGTCAGC
[B-actin
Forward ATCGTCCACCGCAAATGCTTCTA
Reverse AGCCATGCCAATCTCATCTTGTT

qRT-PCR: quantitative reverse transcription polymerase chain
reaction;, CPNEI: Copine-1.

2.6 Cell counting kit-8 (CCK-8) assay

Treated EC cells (1 x 10 cells/well) were seeded in a 96-well
plate and cultured for the indicated times. The cell viability
was assessed using a CCK-8 kit (96992, Sigma, St. Louis,
MO, USA). The optical density (OD) was measured at 450 nm
using a Tecan Infinite M200 (M NANO, Tecan, Méannedorf,
ZH, Switzerland).

2.7 Clone formation assay

EC cells (600 cells/well) were cultured in 6-well plates and
incubated in culture medium overnight to allow the cells to ad-
here. After different treatments, the EC cells were cultured for
10-14 days until colony formation. Colonies were then fixed
with paraformaldehyde (4%; 8.18715, Sigma, St. Louis, MO,
USA), washed, and stained with GIEMSA staining solution
(32884, Sigma, St. Louis, MO, USA) to investigate colony
formation.

2.8 Determination of glycolysis and
adenosine triphosphate (ATP) levels

Glucose consumption, lactate production, and ATP levels in
EC cells were detected in line with previously used protocol
[21]. Treated EC cells (2 x 10° cells/well) were seeded
into 6-well plates and cultured for 24 h. The culture me-
dia was collected and glucose concentration and lactate level
were measured by utilizing a Glucose Assay Kit-WST (G264,
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Dojindo, Kumamoto, Japan) and a Lactate Assay Kit-WST
(L256, Dojindo, Kumamoto, Japan) following the manufac-
turer’s instructions. Additionally, EC cells (5 x 10° cells)
were collected and treated with ATP Assay Buffer (100 uL;
MAK190, Sigma, St. Louis, MO, USA). The supernatant
was subsequently collected for ATP determination using an
ATP Colorimetric Assay Kit (MAK190, Sigma, St. Louis,
MO, USA). Data were expressed as fold-change relative to the
corresponding controls.

2.9 Statistical analysis

All experiments were performed in triplicate.  Statistics
were conducted as mean + standard deviation. GraphPad
Prism 8.0 software (GraphPad Inc., La Jolla, CA, USA) was
applied for statistical analysis. Clinical factors associated
with survival probability in EC patients were evaluated
utilizing Cox regression and the Kaplan-Meier (Plotter:
http://kmplot.com/analysis).  Differences between groups
were analyzed using Student’s #-test or analysis of variance
(ANOVA). p < 0.05 was considered statistically significant.

3. Results

3.1 CPNE1 played an oncogenic role in EC

First, the high expression of CPNEI in UCEC was confirmed
using UALCAN (Fig. 1A). The correlation between CPNEI
and survival probability was assessed in patients with UCEC
utilizing GEPIA data, which presented that CPNEI1 high ex-
pression diminished survival probability in patients (p = 0.049;
Fig. 1B). Furthermore, we found that the expression of CPNE1
was elevated in EC cell lines (Ishikawa, KLE, RL95-2 and
AN3 CA) compared to hESC cells (Fig. 1C). Among these,
CPNE]1 upregulation was more pronounced in Ishikawa and
KLE cells, so these two cells lines were selected for subsequent
studies. Overall, these results demonstrated that the CPNE1
expression was enhanced in EC and CPNE1 was closely related
to the development of EC.

3.2 Silencing CPNE1 suppressed
proliferation of EC cells

Next, we confirmed that the expression of CPNE1 was reduced
by transfection with si-CPNEI1#1 or si-CPNE1#2 in Ishikawa
and KLE cells (Fig. 2A,B). Additionally, we found that the
cell viability (FFig. 2C) and colony formation ability (Fig. 2D)
were decreased following si-CPNE1#1 or si-CPNE1#2 trans-
fection in Ishikawa and KLE cells. Hence, we uncovered that
silencing CPNEI suppressed proliferation of EC cells.

3.3 Downregulation of CPNE1 inhibited
aerobic glycolysis of EC cells

We then investigated the effect of CPNE1 on aerobic gly-
colysis of EC cells. We found that the glucose consump-
tion (Fig. 3A), lactate production (Fig. 3B), and ATP levels
(Fig. 3C) in Ishikawa and KLE cells were reduced following
CPNEI1 silencing. Moreover, the expression of HK2 was
diminished after transfection with si-CPNE1#1 or si-CPNE1#2
in Ishikawa and KLE cells (Fig. 3D). Therefore, we suggested
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that downregulated CPNE] inhibited aerobic glycolysis of EC
cells.

3.4 Silencing CPNE1 inhibited AKT/c-myc
pathway in EC cells

In this part, we investigated the signaling pathway that CPNE1
may regulate in EC cells.

We found that the levels of p-AKT/AKT and c-myc were
reduced by transfection with si-CPNE1#1 or si-CPNE1#2 in
Ishikawa and KLE cells (Fig. 4). Among these, the inhibitory
effect of si-CPNE1#1 was more pronounced, so it was selected
for the subsequent rescue experiment.

3.5 Silencing CPNE1 inhibited proliferation
and aerobic glycolysis in EC cells by
modulating the AKT pathway

Finally, we performed rescue experiments. We found that the
levels of p-AKT/AKT and c-myc (Fig. 5A), the expression
of HK2 (Fig. 5B), the cell viability (Fig. 5C), the glucose
consumption (Fig. 5D), lactate production (Fig. SE), and ATP
levels (Fig. 5F) were reduced by si-CPNE1#1 transfection in
Ishikawa and KLE cells, while these effects were mitigated
by SC79 co-treatment. These results confirm that silencing
CPNE] inhibited proliferation and aerobic glycolysis of EC
cells by repressing the AKT pathway.

4. Discussion

In this study, we found that the expression of CPNE1 was
elevated in EC and CPNE1 was closely related to the develop-
ment of EC. Silencing of CPNE1 suppressed proliferation and
aerobic glycolysis of EC cells. Furthermore, downregulation
of CPNEI inhibited AKT/c-myc pathway in EC cells. Finally,
we demonstrated that silencing CPNE1 inhibited proliferation
and aerobic glycolysis of EC cells through modulating the
AKT pathway. In conclusion, CPNEI1 played an oncogenic
role in EC and silencing CPNE]1 inhibited proliferation and
aerobic glycolysis of EC cells via the AKT pathway.

EC is a type of cancer that develops in the endometrial tissue
of the uterus [22]. Cell proliferation and aerobic glycolysis
are two important processes associated with tumor growth and
metabolism [23, 24]. In EC, abnormal cells begin to proliferate
uncontrollably, leading to tumor formation and growth. The
process of cell proliferation is regulated by various factors,
including hormones, growth factors, and signaling pathways
[23]. Aerobic glycolysis is a cellular metabolic process where
in cells convert glucose into energy in the presence of oxy-
gen. This process involves multiple enzymes and metabolic
pathways, ultimately producing ATP as an energy source.
However, the metabolic pattern of cancer cells may differ
from normal cells. In some cases, cancer cells preferentially
generate energy through the glycolysis, a phenomenon known
as the “Warburg effect” [25]. Although this metabolic pathway
is less efficient than normal aerobic respiration, it provides
a faster energy supply required for cancer cell growth and
proliferation [24, 25]. In EC, there is a close relationship
between cell proliferation and aerobic glycolysis. The prolif-
eration of abnormal cells requires an increased energy supply
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FIGURE 1. Copine-1 (CPNEI) played an oncogenic role in endometrial cancer (EC). (A) Uterine corpus endometrial
carcinoma (UCEC)-founded analyses of CPNE1 expression in UCEC. (B) Effect of CPNE!1 expression in UCEC on patients’
survival probability. (C) The content of CPNE1 was analyzed by western blot. ***p < 0.001. UCEC: uterine corpus endometrial
carcinoma; hESC: Human normal endometrial stromal; TCGA: The Cancer Genome Atlas.

and biosynthetic precursors, and aerobic glycolysis provide
a rapid energy source for cancer cells [26]. Additionally,
aerobic glycolysis produces metabolic byproducts, such as
lactate, which can influence the tumor microenvironment and
immune response [25]. Therefore, acrobic glycolysis may play
a vital role in the development of EC. In-depth research into
mechanisms of EC can help us better understand and treat this
disease.

CPNEI1 plays multiple functional roles inside the cell, in-
cluding involvement in cell membrane and organelle localiza-
tion, cell adhesion and movement, apoptosis and cell prolifera-
tion [11, 27]. Studies suggested that CPNE1 might play a role
in various diseases and physiological processes [28]. Wang
et al. [29] other studies found that CPNE1 was upregulated
in cervical squamous cell carcinoma, which was linked with
differentiation and metastasis of cervical cancer. Additionally,
Yang et al. [30] uncovered that CPNE1 overexpression in
gastric cancer was apparently linked with poor prognosis.

Although the functions and regulatory mechanisms of CPNE1
are still under extensive research, there is a preliminary un-
derstanding of its roles in cell biology and diseases. Further
research is needed to uncover the specific functions and regu-
latory mechanisms of CPNEI in different biological processes
and diseases, providing a basis for its possible development as
a therapeutic target. In this study, we found that the expression
of CPNE1 was enhanced in EC and CPNE1 was closely related
to the development of EC. These results were similar with the
reports of Wang et al. [29] and Yang et al. [30].

Dysregulation of the AKT/c-myc pathway is commonly
observed in cancer [31]. Constitutive activation of AKT or
upregulation of c-myc is associated with uncontrolled cell
growth, increased proliferation, and resistance to apoptosis,
all of which contribute to tumorigenesis [32]. The AKT/c-
myc pathway is often aberrantly activated in various cancer
types and is implicated in tumor progression and aggressive-
ness [33]. Targeting the AKT/c-myc pathway has emerged
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FIGURE 2. Silencing Copine-1 (CPNEI) repressed proliferation of endometrial cancer (EC) cells. (A) The expression of
CPNE1 mRNA was evaluated by quantitative reverse transcription polymerase chain reaction (QRT-PCR). (B) The expression of
CPNE1 was analyzed by western blot. (C) The cell viability was observed with a Cell counting kit-8 (CCK-8) assay. (D) The cell
proliferation was evaluated using a colony formation assay. ***p < 0.001. si-NC: control; OD: optical density.
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as a potential therapeutic strategy in cancer treatment [34].
Inhibitors of AKT or c-myc are being explored for their effec-
tiveness in suppressing tumor growth and enhancing sensitivity
to other anticancer therapies. In addition, Wang et al. [35]
revealed that CPNE1 enhanced the growth, glycolysis and drug
resistance of colorectal cancer cells by modulating the AKT-
glucose transporter type 1 (GLUT1)/HK2 pathway. Shao et al.

[36] confirmed that CPNE1 predicts poor prognosis of triple-
negative breast cancer through AKT signaling pathway and
promotes tumorigenesis and radiation resistance. In our study,
we found for the first time that silencing CPNE1 suppressed
proliferation and aerobic glycolysis of EC cells. Moreover,
silencing CPNEI inhibited AKT/c-myc pathway in EC cells.
We revealed for the first time that silencing CPNE]1 inhibited
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through modulating the AKT pathway. (A) The levels of phosphorylated Akt kinas/Akt kinas (p-AKT/AKT) and c-myc were
analyzed by western blot. (B) The content of hexokinase 2 (HK2) was examined by western blot. (C) The cell viability was
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(ATP) levels in Ishikawa and KLE cells were measured by commercial kits Compared with the si-NC group, ***p < 0.001;
compared with the si-CPNE1#1 group, *#p < 0.001. si-NC: control; OD: optical density.

proliferation and aerobic glycolysis of EC cells through mod- 5. Conclusions
ulating the AKT pathway. These results were similar with
the conclusions of Wang ef al. [35] and Shao ef al. [36].
However, the study has some limitations. We only investigated
the influence of CPNEI in EC cells, and this conclusion need
to be further validated in animal experiments. In the follow-up
study, we will further verify our findings in mouse models and
clinical practice.

In summary, we found that CPNE1 may serve as a prognostic
marker in EC and its expression is closely related to the de-
velopment of EC. Silencing CPNE1 inhibited the proliferation
and aerobic glycolysis of EC cells by modulating the AKT
pathway. Our study contributes to the early screening of EC
and the prediction of patient prognosis, and it provides new
therapeutic targets and strategies for inhibiting the progress of
EC.
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