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Abstract
Cervical cancer (CC) is the fourth most deadly disease in women. Necroptosis is a
programmed form of necrosis. Increasing evidences indicated that abnormal expression
of necroptosis-related genes was associated with prognosis in cancers. However, the
value of necroptosis-related genes (NRGs) as potential prognostic biomarker for CC is
still unclear. The expression matrix and clinicopathological information were achieved
from the The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression
(GTEx) datasets. Consensus clustering classification was performed and its correlation
with prognosis, clinicopathological features and immunity was analyzed. Subsequently,
we constructed a risk signature (NRGscore) by least absolute shrinkage and selection
operator (LASSO) regression analysis. CIBERSORT, single sample geneset enrichment
analysis (ssGSEA) and ESTIMATE were used to explore the difference in immune
landscape in patients with different risks. We also evaluated the NRGscore signature
in immunotherapy and chemotherapy response prediction between high- and low-
risk groups. Quantitative reverse transcription PCR (qRT-PCR) was performed to
validate the expression difference of key genes in CC tissues. We constructed
the prognostic signature with 9 necroptosis-related genes and patients with high-risk
score featured with significantly worse prognosis, lower proportion of immune cell
infiltration, and higher proportion of immunosuppressive cells. Multivariate regression
analyses displayed that NRGscore signature could not only independently predicted
the overall survival but also performed better than any other clinical and pathological
factors. The qRT-PCR results demonstrated most of NRGs were differently expressed
in CC samples. The NRGscore signature effectively predicted the prognosis of CC
patients and demonstrated close relationship with the tumor immune microenvironment,
chemotherapy and immunotherapy responses. These NRGs could provide potential
targets with regard to the immunotherapy for individualized treatment.
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1. Introduction

Cervical cancer (CC) is the fourth most common malignancy
in women, with over 600,000 new cases projected globally in
2020 [1]. Most CC (over 95%) is caused by persistent human
papillomavirus (HPV) infection, particularly HPV 16 and 18.
Vaccination against HPV, along with screening tests such as
Pap smears and HPV tests, are effective in preventing CC.
Early-stage CC may present with nonspecific clinical symp-
toms, and as the tumor progresses, more severe symptoms
develop. Treatment options include surgery, radiotherapy,
chemotherapy and immunotherapy. Despite intensive therapy,
the recurrence rates in patients with advanced stages can reach
nearly 70% [2, 3]. Despite intensive therapy, the treatment of
recurrent CC remains clinically challenging and is associated

with worst prognosis [4]. Therefore, there is an urgent need for
reliable biomarkers and the development of innovative prog-
nostic signatures for CC to improve the treatment outcomes of
these patients.

Necroptosis is a specific form of programmed cell death
that plays important roles in physiological and pathological
processes [5]. Recent studies have shown that changes in
necroptosis are closely related to the occurrence and develop-
ment of cancer. In many types of tumors, inhibition or loss
of the necroptosis pathway can lead to proliferation and drug
resistance of tumor cells, thereby promoting tumor progression
and metastasis [6–10]. Several studies have demonstrated
the importance of necroptosis-related genes in various can-
cers. For example, different expression levels of genes such
as receptor-interacting protein kinase 1 (RIPK1), receptor-

https://www.ejgo.net
http://doi.org/10.22514/ejgo.2024.116
https://www.ejgo.net/


49

interacting protein kinase 3 (RIPK3) and mixed lineage kinase
domain-like (MLKL) are closely related to the occurrence and
prognosis of multiple cancers [11–13]. In addition, the mech-
anisms of action of many anti-tumor drugs are also related to
the regulation of the necroptosis pathway [14, 15]. Therefore,
in-depth research and analysis of necroptosis-related genes can
help us better understand the mechanisms of tumor occurrence,
development and treatment, and provide a theoretical basis for
the development of new tumor treatment strategies. However,
necroptosis-related genes (NRGs) as a possible prognostic
biomarker for CC remains undetermined.
Herein, we established a novel NRGs signature for predict-

ing the prognosis of patients with CC through data mining
of The Cancer Genome Atlas (TCGA) dataset. The overall
design and technical flowchart of the study are presented in
Fig. 1. By analyzing the mRNA expression profiles and
clinical data of CC patients, we successfully identify differ-
entially expressed genes (DEGs) with prognostic significance
related to the NRGs. Then, we establish an NRGs signa-
ture using the least absolute shrinkage and selection operator
(LASSO) regression analysis and validate its predictive perfor-
mance using the Gene Expression Omnibus (GEO) validation
datasets. Additionally, we perform enrichment and immune
infiltration analysis on the DEGs from the high- and low-
risk groups. The results demonstrate a strong correlation be-
tween the novel prognostic signature, tumormicroenvironment
(TME) and chemotherapy and immunotherapy responses, sug-
gesting its promising prognostic value and potential utility in
guiding individualized chemotherapy and immunotherapeutic
in CC patients. Furthermore, we verify the mRNA and protein
expression levels of nine key NRGs in CC patients’ tissues
using qRT-PCR.

2. Methods

2.1 Data download and process
A total of 159 genes from the necroptosis pathway were ex-
tracted from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database. The expression matrix and clinical data of
CC patients were obtained from the TCGA dataset, and the
expression profiles of normal cervical samples were obtained
from the Genotype-Tissue Expression database. To validate
the robustness of our gene signature, microarray data and re-
lated clinical characteristics were retrieved fromGEO datasets,
including GSE30760, GSE52903 and GSE44001. Then these
expression profile data were normalized to remove batch ef-
fects and for further analysis. Only patients with histological
confirmation of CC and available survival information were
included in this study.

2.2 Expression levels of NRGs in CC
From the TCGA-CESC cohort and GTEx database, a total of
12,273 differentially expressed genes (DEGs) were identified
using the “DESeq2” package (version 1.40.2) using a thresh-
old of p < 0.05 and the |LogFC| > 1. Additionally, 159
previously published NRGs were included, among which 51
NRGs showed differential expression and were used to con-
struct a protein-protein interaction network using the STRING

database and visualized through Cytoscape. Furthermore,
NRGs correlated with prognosis were identified by perform-
ing univariate Cox regression analysis using the “tinyarray”
package (version 2.2.7).

2.3 Consensus clustering analysis for NRGs

To identify distinct patterns related to necroptosis, consensus
unsupervised clustering analysis was performed using the k-
means clustering method with the “ConsensusClusterPlus”
package (version 1.54.0) and a maximum evaluated k value
of 9 and 1000 resamplings. The optimal value of k was deter-
mined based on the relative increase in consensus and the point
where there was no significant further increase. Subsequently,
patients were assigned to the defined clusters and a comparison
was made among the clusters in terms of clinicopathological
features, prognosis, tumor microenvironment (TME), and im-
mune responses.

2.4 Establishment and evaluation of NRGs
signature

We used LASSO analysis to obtain the necroptosis regulators
correlating with prognosis and the corresponding regression
coefficients. Based on the LASSO regression results, an NRGs
gene signature (NRGscore) was developed for the investigated
CC patients, whose risk score was calculated using the follow-
ing formula:

∑n
i=1 Coef i × Xi, where Coef i refers to the

expression data of each necroptosis regulator. After catego-
rizing patients into high- and low-risk subgroups based on the
median risk score, we conducted Kaplan-Meier (KM) analysis
using the “tinyarray” package to compare the overall survival
rates between these groups. Additionally, the accuracy of
the NRGscore signature was assessed using receiver operating
characteristic (ROC) curves. Time-independent ROC analyses
were performed to evaluate the predictive accuracy of the
NRGscore signature for 1-, 3- and 5-year survival. The area
under the curves (AUCs) were used to measure the prognostic
accuracy and compared with clinicopathological characteris-
tics to assess predictive performance. Principal Component
Analysis (PCA) and t-distributed Stochastic Neighbor Em-
bedding (tSNE) were utilized for dimension reduction and
visualization of patient diversity between comparison groups.
To determine if the NRGscore signature can be applied to
patients with different clinicopathological stratifications, CC
patients were divided into comparison groups based on factors
such as age, grade and international federation of gynecology
and obstetrics (FIGO) stage, then their overall survival rates
for the high- and low-risk patients were compared using KM
analysis.
Next, the external datasets GSE30760, GSE52903 and

GSE44001 were used to evaluate the predictive performance
of this NRGscore signature. Then, these microarray data
and corresponding clinical information were extracted from
the GEO database using the “GEOquery” software (version
2.58.0). Supplementary Table 1 presents the baseline
characteristics of the CC patients from the TCGA and GEO
datasets.
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FIGURE 1. The study’s flow chart. TCGA, The Cancer Genome Atlas; GTEx, The Genotype-Tissue Expression; KEGG,
Kyoto Encyclopedia of Genes andGenomes; DEGs, differentially expressed genes; LASSO, least absolute shrinkage and selection
operator; qRT-PCR, quantitative reverse transcription PCR; GEO, Gene Expression Omnibus; NRGs, necroptosis-related genes;
GO, Gene Ontology; GSEA, Gene set enrichment analysis.

2.5 Functional enrichment analysis
Gene set enrichment analysis (GSEA) was performed to de-
termine the potential underlying regulatory mechanisms using
the gene set “c2.cp.kegg.v7.4.symbols.gmt” obtained from the
Broad Institute database. Gene Ontology (GO) and KEGG
functional enrichment were also conducted, and all these anal-
yses were performed using the R packages “limma”, “cluster-
Profiler”, “gseaplot2” and “ggplot2”.

2.6 Mutation spectrum analyses
Tumor mutation burden (TMB) was used to predict the ef-
fect of immunotherapeutic response. Additionally, waterfall
plots were drawn to display the mutation landscape using
the “maftools” package (version 2.6.05). Furthermore, the
association between TMB and risk score was evaluated using
Pearson correlation analysis, with statistical significance set at
p < 0.05.

2.7 Tumor microenvironment cell
infiltration analyses
The CIBERSORT deconvolution algorithm was used to evalu-
ate the immune infiltration proportion of 22 immune cell sub-

types based on gene expression values. The patients were cate-
gorized into distinct proportion groups based on their immune
cell infiltration level, and their overall survival rate difference
was compared using the KM survival analysis. Pearson cor-
relation analysis was performed to determine the relationship
between the degree of immune cell infiltration and the risk
ratings. Additionally, ssGSEA was used to assess the per-
centage of immune cells infiltrating a tissue and the potential
immunological activities.

2.8 Immunotherapy response prediction

To assess the difference in immunogenicity between
the comparison groups, we collected information on
immunophenoscore (IPS) from The Cancer Imaging Archive
database for patients with CC. IPS is a numerical score ranging
from 0 to 10, which reflects the level of immunogenicity
based on four key gene categories, where a higher IPS score
indicates greater immunogenicity. IPS is a potential marker for
predicting the response to cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4) and programmed death ligand 1 (PD-
L1) antibodies. Tumor immune dysfunction and exclusion
(TIDE) scores were calculated using a normalized corrected
expression matrix obtained from the TIDE database. Patients
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with lower TIDE scores are more likely to exhibit improved
responses and increased sensitivity to immune checkpoint
inhibitors (ICIs). To assess the correlation between immune
checkpoint genes and the NRGscore model, we analyzed
the expression matrix of immune checkpoint genes in both
high- and low-risk categories. Additionally, we examined the
relationship between the risk score and immune checkpoint
genes using the “ggplot2” software (version 3.4.0). The
immune cytolytic activity score (CYT) is a novel biomarker
for antitumor immunity, which is calculated as the geometric
mean of perforin (PRF1) and granzyme A (GZMA) mRNA
expression levels. PRF1 and GZMA are significantly
upregulated during CD8+ T cell activation and in clinical
responses to CTLA4 or PD-L1 antibody treatments, and their
upregulation has also been associated with improved patient
survival.

2.9 Analysis of potential chemotherapy
drugs and compounds
We utilized the Genomics of Drug Sensitivity in Cancer
(GDSC) database to predict chemotherapeutic sensitivity,
specifically by calculating the half maximal inhibitory
concentration (IC50). Furthermore, we employed the
“DESeq2” method to identify DEGs between the high- and
low-risk subgroups; then, the potential anti-cancer compounds
were assessed in the Connectivity Map (CMap) database
(https://clue.io/).

2.10 Total RNA extraction and real-time
quantitative PCR (qRT-PCR)
The CC and adjacent non-tumor samples were obtained from
the Department of Gynecology at Ningbo First Hospital. Total
RNA was extracted from the cervical tissues using the TRIzol
reagent (10296028, Invitrogen, Carlsbad, CA, USA) following
the manufacturer’s instructions. Then, cDNAs were generated
using the SuperScript III Reverse Transcriptase kit (11752050,
ABI-Invitrogen, Carlsbad, CA, USA) and subjected to qRT-
PCR analysis using the SYBR qPCR Mix (4472920, ABI-
invitrogen, Carlsbad, CA, USA) on the StepOnePlus Real-

Time PCR system (Applied Biosystems, USA). The primer
sequences used for the analysis are shown in Table 1. The
Human Protein Atlas (HPA) database, which integrates multi-
ple omics technologies to map human proteins in cells, tissues
and organs, was searched to identify representative images
of immunohistochemistry displaying the expression of hub
NRGs.

2.11 Statistical analyses
Statistical significance between comparison groups was eval-
uated using both the two-sample t-test and the Wilcoxon-
Mann-Whitney test. The survival analysis of different risk
score subgroups was performed using the KMmethod with the
“survminer” and “survival” packages. The statistical analyses
were conducted using R software (version 4.0.4, University of
Auckland, Auckland, New Zealand).

3. Results

3.1 Analyses of differentially expressed
NRGs in CC
Firstly, we integrated expression matrix of 303 cancer tissues
from the TCGA-CESC dataset and ten normal tissues from
the GTEx database and identified 12,273 DEGs. Then, we
isolated the expression values of 51 differentially expressed
NRGs. Among these DEGs, glycogen phosphorylase, mus-
cle associated (PYGM), (MAPK10), calcium/calmodulin de-
pendent protein kinase ii alpha (CAMK2A), BCL2 apoptosis
regulator (BCL2), jumonji domain containing 7-phospholipase
a2, group ivb (cytosolic) read-through (JMJD7-PLA2G4B),
signal transducer and activator of transcription 5b (STAT5B),
phospholipase a2 group ivb (PLA2G4B), TNF Receptor As-
sociated Factor 5 (TRAF5) and toll like receptor 4 (TLR4)
were downregulated in tumor samples, the rest of NRGs were
all upregulated. To further investigate the connection among
these NRGs, we utilized STRING database to develop protein-
protein interaction (PPI) network. Using the CytoHubba plu-
gin and MCC algorithm, we identified the top 35 shared genes
(Supplementary Fig. 1A). Furthermore, to explore the corre-

TABLE 1. Primer sequences for real-time quantitative PCR.
Gene Forward primer (5′-3′) Reverse primer (5′-3′)
IL-1β TTTGAGTCTGCCCAGTTCCC GTTATATCCTGGCCGCCTT
H2AZ1 TGAACTGGCAGGAAATGCATC CCACCAGCAATTGTAGCCTT
H2AC14 GTACCTGACCGCCGAGATCCT GCTCCTCATCGTTGCGGATGG
TNFAIP3 CGCCTGTGATCATTTTGGCAAT AGCCATACATCTGCTTGAACTGA
CHMP4C TGGGCAAGAAACAAGAGTACCTG CCTCTTCTTTCTCTTTAGTGCCT
PLA2G4B CTACTGTGCCCTCAACACCAA GCTGCCCCATAAAGAACTCGGA
BCL2 GAGGAGCTTTGTTTCAACCA AATACCATGAATTAAATGCGGAA
CYBB ATTCTCTTGCCAGTCTGTCG TGAAGTGCAATCATCCATGCC
SLC25A5 CTGTTGCCGGGTTGACTTCC GCCTCCTTCATCACGAGCAAT
IL-1β, interleukin-1β; H2AZ1, H2A.Z variant histone 1; H2AC14, H2A clustered histone 14; TNFAIP3, TNF alpha induced
protein 3; CHMP4C, charged multivesicular body protein 4c; PLA2G4B, phospholipase a2 group ivb; BCL2, BCL2 apoptosis
regulator; CYBB, cytochrome b-245 beta chain; SLC25A5, solute carrier family 25 member 5.

https://clue.io/


52

lation among these NRGs, we carried out Pearson correlation
analysis on these 51 genes (Supplementary Fig. 1B). The re-
sults demonstrated that fas ligand (FASLG), IL-1β, PLA2G4B
and pyd and card domain containing (PYCARD) displayed
strong positive correlations with Interferon Gamma (IFNG)
(cor = 0.86), interleukin 1 alpha (IL1A) (cor = 0.85), JMJD7-
PLA2G4B (cor = 0.79) and charged multivesicular body pro-
tein 2a (CHMP2A) (cor = 0.67) respectively. While pep-
tidylprolyl isomerase a (PPIA) and CHMP2A were negatively
correlated with the TRAF5 (cor = −0.32) and TNFRSF10A
(cor = −0.34). These results indicated that necroptosis-related
genes may play a crucial part in the initiation and development
of CC carcinogenesis.

3.2 Identification of prognostic NGRs and
consensus clustering analysis
After integrating the clinical information with the expression
matrix of 303 tumor samples, we performed univariate Cox
regression analysis on the 51 NRGs, using a selection criterion
of p< 0.05, to identify prognostic genes for CC. Eleven NRGs
showing potential prognostic value for CC were identified,
namely five risky genes (CHMP4C, TNFAIP3, IL1A, fas asso-
ciated via death domain (FADD) and IL-1β) and six protective
genes (H2AC14, SLC25A5, CYBB, H2AZ1, PLA2G4B and
BCL2). Using consensus clustering analysis, the optimal value
of k was determined to be 3, which was used to assign patients
into three distinct clusters (Fig. 2A). ClusterA consisted of 153
cases, ClusterB had 97 cases, and ClusterC included 25 cases.
Hierarchical clustering revealed distinct expression patterns
of five NRGs among the three clusters (Supplementary Fig.
2). Furthermore, KM survival analysis showed significant
differences in overall survival rates among the three clusters
(Fig. 2B), with patients fromClusterA demonstrating the worst
prognosis. Additionally, we compared the clinical character-
istics among the three clusters, and the results indicated that
patients from ClusterA had more severe clinical symptoms
than those in ClusterB and ClusterC. Fig. 2C illustrates the
different clinicopathological features observed in the three
clusters.

3.3 Immune cell infiltration patterns in
different clusters
To investigate the TME in different clusters, we evaluated the
percentage of immune cell infiltration using ssGSEA, which
revealed different clusters displaying distinct immune cell in-
filtration (Fig. 3A). ClusterC exhibited a high proportion of
B cells, macrophages, neutrophils and tumor-infiltrating lym-
phocytes (TILs). ClusterB showed a lower proportion of
immune cell infiltration compared to ClusterC. ClusterA had
a low proportion of immune cells and only showed a high
proportion of neutrophils and TILs. Furthermore, we assessed
the average immune score, estimate score and stromal score,
which were higher in ClusterC than ClusterA and ClusterB.
Additionally, the tumor purity in ClusterC was the lowest
among the three clusters (Fig. 3B). Moreover, no significant
difference was observed upon comparing the expression levels
of human leukocyte antigen (HLA) genes, TMB levels and IPS
analyses among the three clusters (Supplementary Fig. 3).

3.4 Construction of the NRGs signature
To establish the NRGscore, we used the LASSO regression al-
gorithm to analyze the elevenNRGs (Fig. 4A,B). The signature
comprised nine necroptosis-related genes: H2AZ1, H2AC14,
PLA2G4B, BCL2, CYBB and SLC25A5, which were down-
regulated (coefficients <0), were considered protective genes,
while IL1B, TNFAIP3 and CHMP4C, which were upregulated
(coefficients>0), were considered risky genes. The risk score
calculation is as follows: Risk score = (0.019 × IL1B expres-
sion value) + (−0.001 × H2AZ1 expression value) + (−0.172
× H2AC14 expression value) + (0.009× TNFAIP3 expression
value) + (0.045 × CHMP4C expression value) + (−0.027 ×
PLA2G4B expression value) + (−0.096 × BCL2 expression
value) + (−0.021 × CYBB expression value) + (−0.001 ×
SLC25A5 expression value). Based on the median risk score,
the CC patients were divided into a high-risk subgroup (n
= 137 patients) and a low-risk subgroup (n = 138 patients).
Then, PCA and tSNE were used for dimension reduction
and to visualize the diversity. The results demonstrated that
the high-risk and low-risk patients could be well-demarcated
(Fig. 4F,G).

3.5 Validation of the NRGscore signature
To validate the robustness of the NRGscore signature,
we integrated the expression matrix of IL1B, TNFAIP3,
CHMP4C, PLA2G4B, BCL2, CYBB and SLC25A5, along with
the corresponding survival information from the GSE30760,
GSE52903 and GSE44001 datasets. Then, the risk scores
for the samples in these datasets were calculated using the
above-mentioned formula. The validation results exhibited
strong agreement with those obtained from the TCGA cohort,
with CC patients with higher risk scores demonstrating
worse prognoses (p < 0.001) (Supplementary Fig. 4C).
The survival status and risk score distributions are shown
in Supplementary Fig. 4A,B, respectively. Furthermore,
the ROC curves demonstrate the superior predictive ability
of our signature for CC patients (Supplementary Fig.
4D). Collectively, these findings provide evidence that our
NRGscore signature exhibits good prognostic performance in
CC.

3.6 Association of risk score model with the
prognosis of CC patients
To evaluate the predictive performance of the NRGscore
model, KM curves were generated to compare the prognosis
between different risk score groups. The results indicated that
CC patients with low risk scores had a significantly better
prognosis (p < 0.001; Fig. 4D). The survival status and risk
score distributions are illustrated in Fig. 4C,E, respectively,
which shows that as the risk scores increased, a larger
number of CC patients experienced unfavorable outcomes.
Univariate analysis demonstrated a significant correlation
between the risk score and prognosis (hazard ratio (HR):
3.030, 95% confidence interval (CI): 1.990–4.137, p < 0.001;
Fig. 4H). Furthermore, multivariate analysis confirmed that
the NRGscore signature independently predicted prognosis
(HR: 2.870, 95% CI: 1.851–4.448, p < 0.001; Fig. 4I).
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FIGURE 2. Consensus clustering analysis, stratification of clinicopathological characterization, and prognosis
difference of the three clusters in cervical cancer. (A) k = 2 was used to ensure the clustering stability. (B) Survival analysis for
the distinct clusters using Kaplan-Meier curves. (C) The different clinicopathological features of the three clusters. G1/2, Grade
1/2; G3, Grade 3.

ROC curve analysis demonstrated that our gene signature
outperformed other clinical and pathological criteria. The
AUC values for 1, 3 and 5-year survival were 0.708, 0.685
and 0.765, respectively, indicating a good prognostic ability
(Fig. 4J).

3.7 Stratification analyses of the NRGscore
signature in clinicopathological features

To evaluate whether the NRGscore signature can be applied to
CC patients with different clinical stratifications, we divided

them into comparison groups based on age, grade and FIGO
stage and compared their overall survival time via KM analy-
ses. The results demonstrated that the NRGscore character-
istics could effectively predict the prognosis of CC patients
across different clinical categories (Supplementary Fig. 5).

3.8 Construction of the NRGscore
signature-based nomogram

We constructed a nomogram that serves as a clinically applica-
ble tool to predict the overall survival (OS) time of CC patients
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FIGURE 3. Immune cell infiltration. (A) ssGSEA analysis showed that different clusters displayed distinct immune cell
infiltration. (B) Comparisons among the three clusters via ESTIMATE method *p < 0.05, **p < 0.01 and ***p < 0.001. aDCs,
activated dendritic cells; APC, antigen presenting cell; CCR, CC chemokine receptor; DCs, dendritic cells; iDCs, immature
dendritic cells; MHC, major histocompatibility complex; NK, natural killer; pDCs, plasmacytoid dendritic cells; Tfh, T follicular
helper; Th1, Type 1 T helper cell; TIL, tumor infiltrating lymphocytes; Treg, regulatory T cells; IFN, interferon.

based on age, FIGO stage, grade and risk score (Fig. 5A).
The calibration plots illustrated good consistency between the
observed overall survival rate and the predicted survival rates
at 1, 3 and 5 years (Fig. 5B). To assess the clinical prac-
ticality of our NRGscore signature, we performed decision
curve analysis, which takes into account the preferences of
patients and clinicians and involves weighing the benefits and
harms associated with the prediction model. Comparison of
the performance of variables such as age, FIGO stage, grade,
risk score and the nomogram indicated that the nomogram
demonstrated the best predictive ability (Fig. 5C).

3.9 Stratification analyses of the NRGscore
model in immune features
We evaluated the infiltration levels of immune cells and im-
mune checkpoint molecules to investigate the association be-
tween our NRGscore model, the tumor immune microenvi-
ronment and immunotherapeutic response. Using the CIBER-
SORT deconvolution algorithm, we found that the low-risk

group exhibited elevated levels of immune cell infiltration,
including CD8+ T cells, regulatory T cells (Tregs), resting
NK cells, and resting dendritic cells. Conversely, the levels
of macrophages M0, activated dendritic cells, activated mast
cells and neutrophils were significantly decreased in the low-
risk group (Fig. 6A). We further validated the distinct pro-
portions of immune cell infiltration and functions using the
ssGSEA algorithm. The low-risk group showed significantly
increased proportions of B cells, macrophages, CD8+ T cells,
NK cells, neutrophils, T helper cells and tumor-infiltrating
lymphocytes (TILs). Additionally, the activity of immune
functions, particularly inflammation promotion, checkpoint
regulation, and human leukocyte antigen (HLA) expression,
was significantly elevated in patients with low risk scores (p
< 0.001) (Supplementary Fig. 6A). Moreover, we used the
ESTIMATION algorithm to predict the content of stromal
cells and immune cells and then calculated the ESTIMATE
score by combining them. The low-risk group exhibited higher
estimate scores, stromal scores, and immune scores (Fig. 6B).
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FIGURE 4. Construction and evaluation of necroptosis-related gene signature. (A) The value of the super parameter λ
in the LASSO regression model was determined using 10-fold cross-validation. (B) The overview of LASSO coefficients. (C)
Distribution of survival status and risk score in CC patients. (D) Survival analysis for the low- and high-risk groups. (E) The
heatmap demonstrated the differences with regard to the necroptosis-related genes between comparison groups. (F) Principal
component analysis (PCA) for the expression of necroptosis-related regulators to distinguish patients in high-risk group from
those in low-risk group. (G) T-distributed stochastic neighbor embedding (tSNE) was utilized for dimension reduction and to
visualize the diversity of the patients between high- and low-risk groups. (H) Univariate regression analysis demonstrated that
the risk score and FIGO stage remarkably correlated with prognosis. (I) Multivariate analysis indicated that risk score could
independently predict the prognosis. (J) The ROC curves and area under the curves (AUC) compared the necroptosis-related
gene signature with other clinical and pathological factors.
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FIGURE 5. Nomogram construction and evaluation of prognostic ability of NRGscore signature. (A) Nomogram
construction to predict the probability of patient mortality via four characteristics. (B) Calibration curve. (C) Decision curve
analysis (DCA).

FIGURE 6. TME immune cell infiltration in high- and low-risk groups. (A) CIBERSORTdeconvolution algorithm revealed
the infiltrating levels of 22 immune cell types in comparison groups. (B) Immune score, tumor purity, stromal score, and estimate
score in comparison groups are shown.



57

Spearman correlation analysis revealed an inverse relationship
between the risk score and most immune cell populations
(Supplementary Fig. 6B). Furthermore, we explored the
relationship between the infiltration levels of immune cells and
the prognosis of CC patients. The results demonstrated that
patients with higher infiltration levels of Tregs (p = 0.003),
resting mast cells (p = 0.009), and CD8+ T cells (p = 0.03)
exhibited better prognoses compared to those with lower infil-
tration levels (Supplementary Fig. 6C–E).

3.10 Comparison of mutation status
between high- and low-risk groups

To explore the mechanisms underlying the predictive ability
of the NRGscore signature for CC patient prognosis, we
analyzed the status of single nucleotide polymorphisms
(SNPs) in our model. The top 20 genes with the highest
mutation rates are displayed in Fig. 7A,B. In the high-risk
group, the five genes with the highest alteration frequencies
were phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic
subunit alpha (PIK3CA) (25%), titin (TTN) (24%), lysine
methyltransferase 2c (KMT2C) (19%), mucin 16, cell surface
associated (MUC16) (17%) and filaggrin (FLG) (14%), while
those genes in the low-risk group were TTN (33%), PIK3CA
(27%), KMT2C (19%), DMD (16%) and MUC16 (16%).
Then, we investigated the mutation status of 9 necroptosis-
related genes in the cBioPortal database. The mutation
frequencies, from high to low, were as follows: TNFAIP3,
SLC25A5, CYBB, CHMP4C, H2AZ1, H2AC14, PLA2G4B,
BCL2 and IL1B (Supplementary Fig. 7). In our NRGscore
signature, we did not find a significant correlation between
the risk score and TMB (Fig. 7C). However, when patients
were divided into four groups based on the combination of
NRGscore and TMB levels, the results demonstrated that
patients with high TMB levels and low risk scores had a better
survival rate compared to those with low TMB levels and
high risk scores (p < 0.001, Fig. 7D). These results suggest
that patients with lower risk scores and higher TMB levels
may exhibit better response and derive more benefit from
immunotherapy.

3.11 Copy number variants (CNV) pattern of
the necroptosis-related genes

Copy number variants refer to the structural variations of DNA
that involve a gain or loss of a specific region of the genome,
leading to changes in the copy number of genes. CNVs have
been implicated in the pathogenesis of various diseases, in-
cluding cancer, autoimmune disorders and neurodegenerative
diseases. The copy number variants were obtained fromUCSC
dataset. Investigating the CNV landscape of differentially
expressed necroptosis-related genes represented an important
step in understanding the genetic basis of necroptosis-related
diseases and may lead to new strategies for prevention, diag-
nosis and treatment. Actually, we found that almost all genes
presented CNVs with regard to the loss or gain of DNA copies
(Supplementary Fig. 8).

3.12 Evaluation of the CC patients' response
to immunotherapy
To investigate the association of immune-oncology targets
with the NRGscore signature, we compared the expression
levels of immune checkpoint genes in this model. The results
demonstrated that most of these immune checkpoint genes
were significantly elevated in the low-risk group (Fig. 8A).
Furthermore, we assessed the correlation between the risk
score and immune checkpoints using Spearman analysis. The
results showed a significant negative correlation between the
risk score and the expression levels of programmed cell death
1 (PD-1) (R = −0.34; p < 0.001) and cytotoxic t-lymphocyte
associated protein 4 (CTLA-4) (R=−0.29; p< 0.001) (Fig. 8E),
indicating that patients with low risk score potentially had
better response to PD-1 and CTLA-4 antibodies. Next, we
investigated the correlation between the NRGscore signature
and immunotherapeutic biomarkers using the TIDE database.
The results demonstrated that the TIDE and Exclusion scores
were significantly decreased, while the Dysfunction score was
substantially increased in the low-risk group (Fig. 8C). This
suggests that patients with a lower risk score may respond
better to immune checkpoint blockade, while those with a
higher risk score may exhibit a greater propensity for tumor
immune escape and resistance to cancer immunotherapies.
Furthermore, we calculated the antitumor immune cytolytic
activity score (CYT) using the geometric mean of the expres-
sion levels of the genes perforin 1 (PRF1) and granzyme A
(GZMA). The gene expression profiles of GZMA, PRF1 and
CYT score were negatively correlated with the risk score,
indicating that higher expression of GZMA and PRF1 was
associatedwith improved prognosis, consistent with prior stud-
ies (Fig. 8B,D) [16, 17]. Additionally, we also conducted
IPS analyses and found that patients with low risk scores
demonstrated higher levels of IPS though the difference was
not significant (Supplementary Fig. 9A). Stemness indices,
whichmeasure the stemlike characteristics of tumor cells, have
been associated with poor immunotherapy response in previ-
ous studies and can serve as an indicator for potential immune
treatment outcomes. Analysis of the relationship between
the risk score and mRNAsi showed no noticeable difference
between them (Supplementary Fig. 9B). Furthermore, we
investigated the correlation of the NRGscore signature with
the response to immunotherapy using the IMvigor210 im-
munotherapy cohort. However, we did not find a significant
difference between the high- and low-risk groups in terms of
response to immunotherapy (Supplementary Fig. 9C,D).

3.13 Analysis of pathway and process
enrichment
First, we obtained 159 necroptosis-related DEGs, based on
which functional enrichment analyses were conducted. The
biological processes associated with these DEGs were primar-
ily related to programmed necrotic cell death and necroptotic
processes. The cell composition analysis revealed associa-
tions with the endosomal sorting complex required for trans-
port (ESCRT) III complex, nucleosomes and DNA packaging
complexes. In terms of molecular function, the DEGs were
primarily involved in cytokine receptor binding (Fig. 9A). We
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FIGURE 7. Tumor somatic mutation landscape. Distribution of the top 20 variant mutated genes between high- (A) and
low-risk (B) groups. (C) Differences in tumor mutation burden (TMB) among different risk groups. (D) Survival analyses of
patients with different TMB combined with risk score are presented. DMD, dystrophin; MUC4, mucin 4, cell surface associated;
EP300, e1a binding protein p300; huwe1, hect, uba and wwe domain containing e3 ubiquitin protein ligase 1; MUC17, mucin
17, cell surface associated; USH2A, usherin; FBXW7, f-box and wd repeat domain containing 7; LRP1B, ldl receptor related
protein 1b; DNAH6, dynein axonemal heavy chain 6; FLNA, filamin A; KMT2D, lysine methyltransferase 2d; PCLO, piccolo
presynaptic cytomatrix protein; RYR2, ryanodine receptor 2; CREBBP, creb binding protein; NAV3, neuron navigator 3.

further conducted KEGG pathway analysis, which revealed
that the DEGs were significantly enriched in pathways such as
necroptosis, apoptosis, tumor necrosis factor (TNF) signaling,
nuclear factor kappa light chain enhancer of activated B cells
(NF-κB) signaling pathways, etc., indicating that these NRGs
may be involved in tumorigenesis, tumor progression and
antitumor immunity of cervical cancer (Fig. 9B). Additionally,
GSEA was performed to investigate the pathway enrichment
patterns associated with the risk scores. Patients with high
risk scores showed enrichment in tumor-related pathways,
including apoptosis, nucleotide-binding and oligomerization

domain (NOD)-like receptor signaling, and MAPK signaling
pathways (Fig. 9C). On the other hand, patients with low risk
scores exhibited enhanced enrichment in immune-related path-
ways, such as systemic lupus erythematosus and janus kinase -
signal transducers and activators of transcription (JAK-STAT)
signaling pathway (Fig. 9D). These results indicate that the
differences in prognosis and immunogenicity between high-
and low-risk patients may be attributed to distinct features in
the TME.
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FIGURE 8. Assessment of the patient’s response to the immunotherapy. (A) Comparison of the expression levels of
immune checkpoint genes in high-risk patients versus those at low risk for the disease. (B) The variances in GZMA, PRF1
and CYT expression between comparison groups. (C) Prediction of the sensitivity to immunotherapy through Tumor Immune
Dysfunction and Exclusion database. (D) Spearman analyses were conducted to assess the association between the risk score and
GZMA, PRF1 and CYT score. (E) Correlation between risk score and immune checkpoint genes. TIGIT, T cell immunoreceptor
with Ig and ITIM domains; IDO1, indoleamine 2,3-Dioxygenase 1; CD274, CD274 Molecule; LAG3, lymphocyte Activating 3.
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FIGURE 9. Functional enrichment analysis. (A) GO analysis. (B) KEGG pathways analysis. (C,D) GSEA analysis in (C)
high-risk cohort and (D) low-risk cohort. GnRH, gonadotropin-releasing hormone; IL-17, interleukin-17; AGE-RAGE, advanced
glycation end products (ages), receptor for ages; MAPK, mitogen-activated protein kinase.

3.14 Identification of potential anti-cancer
drugs and compounds
To identify potential chemotherapy targets for treating patients
with CC based on the NRGscore signature, we evaluated
the IC50 (half maximal inhibitory concentration) of seven
drugs between the high- and low-risk groups. We found
that the IC50 values of cisplatin, temsirolimus, etoposide and
gemcitabine were decreased in patients with low risk scores,
indicating potential sensitivity to these drugs, while the IC50
value of docetaxel was elevated in patients with high risk
scores (Fig. 10A). Next, we searched for 300 DEGs in the
CMap database to evaluate the mechanism of action (MoA)
and targeted compounds. We identified 22 MoAs that were
correlated with 28 compounds. Among these compounds, four
(cycloheximide, cephaeline, verrucarin-A and emetine) shared
theMoA of protein synthesis inhibitor, while ingenol, phorbol-
12-myristate-13-acetate and prostratin shared the MoA of the
protein kinase c (PKC) activator (Fig. 10B).

3.15 Validation of the key NRGs by qRT-PCR
in CC clinical samples
We evaluated the mRNA expression levels of nine key NRGs
in CC patients’ tissues using qRT-PCR. The results revealed
that BCL2, SLC25A5 and H2AZ1 were significantly upregu-
lated in cancer tissues (Fig. 11A), while TNFAIP3 andH2AC14
were markedly upregulated in adjacent noncancerous samples,

which were consistent with the results obtained from the bioin-
formatic analyses.
To further investigate the protein expression of these five

differentially expressed genes (BCL2, SLC25A5, H2AZ1, TN-
FAIP3 andH2AC14), we searched for representative images of
immunohistochemistry staining from the HPA database. The
images demonstrated that these hub genes were remarkably
overexpressed in CC samples compared to normal tissues
(Fig. 11B).

4. Discussion

CC is one of the most frequently occurring gynecologic malig-
nancies worldwide. Despite notable advancements in therapy,
the 5-year survival rate for patients with recurrent cervical
cancer remains alarmingly low, at less than 5%. Therefore,
it is crucial to discover specific biomarkers and develop risk-
stratification algorithms to improve prognosis prediction and
guide treatment decisions for CC patients.
In recent years, there has been considerable research on

the relationship between abnormal expression of NRGs and
the development of tumors. Key regulators of necroptosis,
such as RIPK3,MLKL and cylindromatosis (CYLD), have been
found to be suppressed in various tumor cell lines and types.
Additionally, necroptotic cell death has been shown to induce
and enhance antitumor immune responses in the TME [18].
However, some studies have suggested that necroptosis can
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FIGURE 10. Identification of potential anti-cancer drugs and compounds. (A) Chemotherapy drug sensitivity result.
(B) CMap database results to investigate the mechanism of action (MoA) and targeted compounds. PKC, protein kinase C;
HIF, hypoxia-inducible factor; NAMPT, nicotinamide phosphoribosyltransferase; ARFGAP, ADP Ribosylation Factor GTPase
Activating Protein; BCL, B-cell leukemia/lymphoma.
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FIGURE 11. Validation of the nine NRGs by qRT-PCR and immunohistochemistry analysis. (A) The mRNA
expression of H2AZ1, H2AC14, PLA2G4B, BCL2, CYBB, SLC25A5, IL1B, TNFAIP3 and CHMP4C in clinical samples. (B)
Immunohistochemistry of five hub genes from the HPA database. *p < 0.05, **p < 0.01. IL1B, interleukin-1B; H2AZ1, H2A.Z
variant histone 1; H2AC14, H2A clustered histone 14; TNFAIP3, TNF alpha induced protein 3; CHMP4C, charged multivesicular
body protein 4c; PLA2G4B, phospholipase a2 group ivb; BCL2, BCL2 apoptosis regulator; CYBB, cytochrome b-245 beta chain;
SLC25A5, solute carrier family 25 member 5.
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also promote tumor progression [19, 20]. Overall, necroptosis
is involved in tumorigenesis, tumor progression and antitumor
immunity in several cancer types. Since NRGs hold potential
as prognostic and predictive biomarkers for CC patients, we
focused on 51 differentially expressed NGRs in 303 tumor
tissues and 10 normal samples. Through univariate Cox re-
gression analysis, eleven prognostic NRGs were identified.
Utilizing unsupervised consensus clustering analysis based on
the expression patterns of these NRGs, we classified patients
into three distinct clusters, which exhibited variations in clin-
ical characteristics, prognosis, TME immune cell infiltration
and sensitivity to chemotherapy. Furthermore, by employ-
ing LASSO regression analysis, we selected nine key NRGs
(H2AZ1, H2AC14, PLA2G4B, BCL2, CYBB, SLC25A5, IL1B,
TNFAIP3 and CHMP4C) to construct a prognostic risk score
model.
Most NRGs presented in our signature correlated with CC

tumorigenesis and proliferation. CYBB, also named as NOX2,
is a critical component of the membrane-bound oxidase of
phagocytes that generates superoxide, and its expression medi-
ates the interferon-based immune defense against HPV infec-
tion and is associated with favorable prognosis in CC patients
[21]. The therapeutic approaches to treat cervical cancer,
including radiation, chemotherapy and immune-based therapy,
usually produced a marked effect through the induction of
apoptosis, which can be triggered by intrinsic and extrinsic
pathways. In addition, this intrinsic pathway can be triggered
by members of the BCL2 family of proteins and downstream
mitochondrial signals [22–24]. In a study by Xie et al. [25],
punicalagin was shown to promote autophagic degradation of
HPV and downregulate the levels of the major HPV onco-
proteins E6 and E7 in cervical cancer cells by activating the
reactive oxidative species - c-Jun N-terminal kinase (ROS-
JNK) pathway and promoting the phosphorylation of BCL2.
SLC25A5 overexpression has been identified as an independent
prognostic factor in colon cancer patients, where it represses
cell growth by inhibiting the MAPK signaling pathway [26].
IL1B has also been found to be an independent prognostic
factor, and its high levels have been associated with delayed
disease progression in triple-negative breast carcinoma [27].
H2AZ1, as one isoform of H2AZ, plays a pivotal role in hep-
atocarcinogenesis by modulating the cell cycle and epithelial-
mesenchymal transition (EMT)-regulatory proteins [28]. TN-
FAIP3 expression levels are regulated by miR-214 in cervical
cancer cells, and its effects can vary depending on the cell
types involved [29]. For instance, Lee et al. [30] reported
that TNFAIP3 overexpression in triple-negative breast cancer
cells could induce an aggressive phenotype, while in other
breast cancer cells, it may induce apoptosis, further confirming
that the effects of TNFAIP3 may vary depending on the cell
types. CHMP4C, which modulates EMT, has been shown
to contribute to the survival and mobility of cervical cancer
cells. Overexpression of CHMP4C in cervical cancer tissues
is associated with poor overall survival [31].
Recent research has indicated that the activation of the

NF-κB signaling pathway promotes the growth of cervical
cancer and increases the production of tumor necrosis factor-
alpha (TNF-α) [32]. The TNF signaling pathway is involved
in balancing cell survival and necroptosis, a form of pro-

grammed cell death [33]. Additionally, the differentiation
of Th17 cells is regulated by miR-146a, which modulates
cervical cancer cell growth and apoptosis through the NF-κB
signaling pathway by targeting TRAF6 [34]. These findings
suggest that necroptosis-related genes may be involved in
the tumorigenesis and progression of cervical cancer through
both tumor-related and immune-related pathways. However,
further research is needed to fully understand the mechanisms
by which these necroptosis-related genes contribute to CC.
Further, patients with a low risk score in our study showed
enrichment in systemic lupus erythematosus (SLE) and the
JAK-STAT signaling pathway, indicating that the differences
in prognosis and immunogenicity between high- and low-risk
patients may be attributed to distinct features in the TME of
these patient groups.
The proposed NRGscore signature demonstrated indepen-

dent and reliable characteristics for predicting the prognosis
of CC patients. This was evident from the results of various
analyses, including Kaplan-Meier survival analyses, the AUC
values of ROC curves for predicting 1-, 3- and 5-year survival
rates, correlation analyses between clinical features and risk
scores, and univariate and multivariate Cox regression analy-
ses considering clinicopathological traits. The NRGscore sig-
nature showed a good discriminatory performance in terms of
patient prognosis, regardless of age, grade, pathological type or
FIGO stage. Furthermore, patients with high risk scores were
more likely to exhibit clinicopathological characteristics and
molecular subtypes associated with high malignancy, while
patients with low risk scores showed the opposite trend.
In this study, we compared the degree of immune cell

infiltration and immune function in relation to the NRGscore.
We found that patients with a high risk score had a lower
percentage of immune cell infiltration and weaker antitumor
immune response. Dendritic cells are key components of
the system for antigen processing and presentation [35]. The
risk score showed a negative correlation with resting dendritic
cells and a positive correlation with activated dendritic cells,
indicating a potential dysfunction in the antigen processing
and presentation system associated with a high risk score. NK
cells, which play critical roles in tumor immune surveillance,
demonstrated prognostic significance, with reduced NK cell
function linked to worse prognosis in cancer patients [36, 37].
Neutrophils exhibited diverse roles in different tumors, pro-
moting cancer growth and migration in some types (e.g., pan-
creatic cancer, hepatocellular carcinoma, and breast cancer)
[38–40] while inhibiting lymph node metastasis in others (e.g.,
Epstein-Barr virus-associated gastric carcinoma) [41]. CD8+
T cells, known for their tumor-suppressive function, have been
associated with improved prognosis in various cancers [42].
The composition and numbers of TILs are considered impor-
tant indicators of the host immune response to tumors and
have shown good prognostic value [43]. Our study revealed
that patients with a low risk score had significantly higher
proportions of CD8+ T cells and TILs, leading to a better
prognosis than patients with a high risk score.
Immune checkpoint inhibitors (ICIs), such as CTLA-4 and

PD-1 targeted therapies, have shown promising response rates
in recurrent and metastatic tumors, including CC, with CTLA-
4 and PD-1 being the most commonly targeted molecules.
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These therapies have demonstrated durable responses and
lower toxicity than traditional chemotherapeutic drugs
[44, 45]. We found that patients with a low risk score, based
on our NRGscore signature, had elevated expression levels of
immune checkpoint molecules such as PD-1, CTLA-4 and T
cell immunoreceptor with Ig and ITIM domains (TIGIT). This
suggests that ICIs may be more effective in low-risk patients.
Currently, Pembrolizumab, targeting the PD-1 receptor,
is the only FDA-approved ICI for recurrent or metastatic
CC [46]. There are many ongoing phase II and phase III
clinical trials, such as NCT03830866 (CALLA), CT04221945
(KEYNOTE-A18) and NCT03635567 (Keynote-826), which
will provide more novel evidence to evaluate the value of ICIs
in CC patients. Several studies have demonstrated that the
correct timing, combinations and sequencing of chemotherapy
might promote antitumor immunity by affecting the TME.
Additionally, combining ICIs with chemotherapy and
radiation can induce cell death and antigen presentation and
block immunosuppressive pathways, and holds promise for
overcoming immunotherapy resistance in CC [47].

In this study, we observed that low-risk CC patients were
more responsive to cisplatin, temsirolimus, etoposide and gem-
citabine, while high-risk patients showed increased sensitivity
to docetaxel. This information can guide the development
of individualized treatment plans for CC patients based on
their risk groups. We searched the CMap database for small
molecular compounds to explore potential therapeutic options
and identified 20 compounds, including vincristine, cyclohex-
imide, phorbol-12-myristate-13-acetate and prostratin. Previ-
ous research has demonstrated that vincristine, in combina-
tion with cisplatin and intensity-modulated radiation therapy,
showed optimized clinical efficacy and safety for advanced-
stage CC patients [48]. Cycloheximide had been shown to
reverse chemotherapy resistance in prostate cancer cells by
inhibiting heat shock protein function [49]. Sung et al. [50]
found that phorbol-12-myristate-13-acetate induces invasion
and migration of HeLa cancer cells, which can be suppressed
by the antioxidant 6-hydroxy-2,5,7,8-tetramethylchroman-2-
carboxylic acid. Additionally, prostratin has been shown to
exert anti-cancer effects by down-regulating the expression
of chemokine receptor type 4 through the inhibition of salt-
inducible kinase 3 (SIK3) expression in breast cancer cells
[51].

This study has several limitations that should be acknowl-
edged. Firstly, the NRGscore signature was constructed using
data solely from public databases, and external validation with
real-world data and larger sample sizes is necessary to confirm
its reliability and generalizability. Future studies should aim to
include diverse populations and additional clinical information
to improve the robustness of the signature. Secondly, the use
of ICIs in CC is still relatively new, and there is a lack of
available immunotherapy data specific to this disease. Thus,
further research and clinical trials are needed to generate more
comprehensive and reliable evidence regarding the effective-
ness of ICIs in CC treatment.

5. Conclusions

In conclusion, the proposed NRGscore signature could inde-
pendently predict the prognosis of CC patients and is closely
associated with the tumor microenvironment, chemotherapy
response and immunotherapy outcomes, thereby contribut-
ing to our understanding of the mechanisms underlying CC
carcinogenesis, tumor development and antitumor immunity.
The identified necroptosis-related genes could be promising
targets for improving immunotherapy outcomes and enabling
individualized treatment approaches in CC patients.
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