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Abstract
Background: Serous ovarian cancer (SOC) is classified into high-grade serous ovarian
cancer (HGSOC) and low-grade serous ovarian cancer (LGSOC), with HGSOC and
LGSOC differing significantly in terms of clinical processes, treatment methods
and treatment targets. Herein, we emphasize the importance of ongoing molecular
studies to distinguish between HGSOC and LGSOC to improve treatment options
for patients with these specific subtypes. Methods: Two gene expression profiles
(GSE27651 and GSE73168) from the Gene Expression Omnibus (GEO) database were
analyzed using bioinformatics methods, and Metascape and the KEGG Orthology-
Based Annotation System (KOBAS) online software were used to identify differentially
expressed genes (DEGs) from Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways significantly enriched in HGSOC and LGSOC samples. Results: Our findings
revealed that compared to LGSOC, HGSOC exhibited significant upregulation of 265
DEGs mainly associated with the KEGG pathway of p53 signaling and focal adhesion.
Additionally, 423 significantly downregulated DEGs were mainly enriched in the KEGG
pathway of the chemokine signaling pathway. Among these genes, tumor protein
p53 (TP53), tumor protein p53-inducible protein 3 (TP53I3), ferredoxin reductase
(FDXR), epidermal growth factor receptor (EGFR) and C-X-C motif chemokine ligand
11 (CXCL11) were identified as key hub genes through Protein-Protein Interaction (PPI)
network analysis and ovarian cancer gene and protein expression analysis. Furthermore,
we explored the correlation between the expression of these 5 hub genes and various
factors, including ovarian cancer prognosis, immune infiltration, ovarian cancer stage,
grade, age and drug targets. Conclusions: This study contributes to the understanding of
differential signaling molecules between HGSOC and LGSOC, facilitating the transition
from amonotherapy approach to a more precise treatment strategy tailored to the specific
features of each subtype. Additionally, it provides valuable insights into the differential
diagnosis and detection targets for these two types of ovarian cancer.
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1. Introduction

Ovarian cancer, a highly lethal gynecological cancer, is often
undetected until it reaches its advanced stages due to a lack of
accurate early screening methods [1]. As a result, patients with
ovarian cancer typically have poor prognoses and low survival
rates [2, 3]. Although the primary treatment approach involves
a combination of surgical resection and chemotherapy, long-
term treatment can lead to the development of resistance to tar-
geted therapies [4, 5]. Recent research has explored the poten-
tial of using cell-free DNAmethylome for early ovarian cancer
detection, and the combination of hyperthermic intraperitoneal
chemotherapy after interval cytoreductive surgery has shown

promise in improving the survival of patients with advanced
ovarian cancer [6, 7]. Despite significant efforts in this field,
the overall survival rates of ovarian cancer patients have not
significantly improved, possibly due to its underlying hetero-
geneity. Therefore, further experimental studies are crucial to
identify specific differences between different ovarian cancer
subtypes and offer theoretical guidance for early diagnosis and
precise treatment of ovarian cancer.

Ovarian cancer is a highly heterogeneous disease, which can
be divided into epithelial ovarian cancer, germ cell ovarian
cancer and sex cord-stromal ovarian cancer, with epithelial
ovarian cancer (EOC) being the most prevalent, accounting for
over 90% of cases. Among the EOCs, serous ovarian cancer
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(SOC) is the predominant type, which can be further divided
into high-grade serous ovarian cancer (HGSOC) and low-grade
serous ovarian cancer (LGSOC), each having distinct clinical
andmolecular characteristics [8]. HGSOC is themost common
histologic subtype, representing more than 70% of EOC cases
[9]. As a result, most therapeutic advancements have been
focused on HGSOC, with limited progress in uncommon his-
tologic subtypes [10]. On the other hand, LGSOC constitutes
approximately 10% of EOC cases [11] and exhibits a unique
molecular profile compared to HGSOC. LGSOC generally
has a more favorable prognosis but presents specific chal-
lenges, including diagnosis at a younger age, greater resistance
to chemotherapy, and prolonged overall survival [12]. Due
to the heterogeneity of ovarian cancer, different therapeutic
approaches have varying effects, and the clinical impact of
certain cancer-related genes in ovarian cancer treatment has
been limited, prompting researchers to actively seek new and
more precise anti-cancer targets tailored to different cancer
subtypes.
Considering the large number of heterogeneous molecules

between tumors of different histological types, we aimed
to explore the molecular differences between HGSOC
and LGSOC by analyzing two Gene Expression Omnibus
(GEO) datasets (GSE27651 and GSE73168) using HGSOC
and LGSOC samples, based on which overlapping
differentially expressed genes (DEGs) were identified
for further investigation. Through bioinformatics methods, we
analyzed and compared the molecular functions of HGSOC
and LGSOC samples, leading to the identification of key
differential molecules. Collectively, the findings from this
research could be valuable for instances where a diagnosis is
uncertain, as it could potentially provide new detection targets
and therapeutic options for distinguishing between the two
types of ovarian cancers.

2. Materials and methods

2.1 Data preparation and screening of DEGs
To compare the molecular differences between HGSOC
and LGSOC, we selected two GEO datasets, GSE27651
and GSE73168, and carefully selected samples from each
subtype for analysis and comparison. The sample sources
of GSE27651 and GSE73168 are both human. Among
them, GSE27651 separated epithelial cells from rapidly
frozen surgical specimens through in vitro laser capture
microdissection [13], while GSE73168 obtained human tumor
samples from patients diagnosed with advanced HGSOC
and LGSOC and separated epithelial tumor cells from tumor
tissues of different origins using the Magnetic Particle
Sorting (MACS) system (Miltenyi Biotech) [14]. First, we
conducted GEO2R analysis on the selected samples and
examined gene expression changes through the volcano plot
generated by the limma algorithm and the mean difference
plot generated by the limma package. Then, we assessed the
significance of differences between the two sample groups
using the Uniform Manifold Approximation and Projection
(UMAP) chart and removed samples mixed with the control
group. Next, we individually screened the DEGs between

HGSOC and LGSOC samples in the two datasets, using
parameters set to adj.p.val < 0.01 and |Log2FC| > 1. In
GSE27651, we identified a total of 12,109 DEGs, with
7383 significantly upregulated genes and 4726 significantly
downregulated genes. On the other hand, GSE73168 revealed
3520 DEGs, including 1094 significantly upregulated and
2426 significantly downregulated genes. To identify common
DEGs between the two datasets, we performed Venn analysis
on the DEGs data using the Draw Venn Diagram online
website (http://bioinformatics.psb.ugent.be/webtools/Venn).
In the follow-up studies, we intersected these genes to obtain
valuable insights into the molecular distinctions between
HGSOC and LGSOC.

2.2 Gene ontology (GO)/Kyoto encylopedia
of genes and genomes (KEGG) analysis
After performing the Venn analysis to identify significantly
upregulated/downregulated genes, we further analyzed
these genes using Metascape online software [15]
(https://metascape.org/gp/index.html#/main/step1) and the top
20 clusters were selected for display [15, 16]. Additionally,
we conducted KEGG pathway enrichment analysis on the
aforementioned significantly upregulated/downregulated
genes using the KEGG Orthology Based Annotation System
(KOBAS) online [17] (http://bioinfo.org/kobas). A corrected
p-value < 0.05 was considered to identify significantly
enriched genes [17].

2.3 Protein-protein interaction (PPI)
network analysis
The PPI regulatory network for the significantly
upregulated/downregulated genes identified in the Venn
analysis was constructed using the STRING online website,
with a minimum required interaction score of medium
confidence (0.400) [18] (https://cn.string-db.org/). For the
upregulated genes, the network consisted of 257 nodes and
445 edges, with a highly significant PPI enrichment p-value
of 2.08 × 10−13. On the other hand, the network for the
downregulated genes included 393 nodes and 979 edges, with
an even more significant PPI enrichment p-value of less than
1.0 × 10−16. Subsequently, the PPI network analysis of both
upregulated and downregulated genes was performed using
Cytoscape software [19]. To identify the top 10 hub genes in
each network, the maximal clique centrality (MCC) algorithm
from the cytoHubba plugin in Cytoscape was utilized.

2.4 Cancer genomics analysis
Cancer genomics analysis was performed via the
cBioPortal online website, and selected the Ovarian Serous
Cystadenocarcinoma dataset from The Cancer Genome
Atlas (TCGA) PanCancer data [20]. Integrative analysis
of complex cancer genomics and clinical profiles using the
cBioPortalThe cBio Cancer Genomics Portal: An Open
Platform for Exploring Multidimensional Cancer Genomics
Data (https://www.cbioportal.org/). We analyzed the genetic
alterations of 20 hub genes in all ovarian cancer patient
samples (585 patients/samples) and their correlation with the
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overall survival (OS) and progression-free status (PFS) of
ovarian cancer patients.

2.5 Expression analysis of hub genes and
proteins

The GeneExpression Profiling Interactive Analysis (GEPIA)
online software was used to analyze the expression of hub
genes in both the TCGA and Genotype-Tissue Expression
(GTEx) databases of ovarian cancer [21] (http://gepia.cancer-
pku.cn/). The protein expression of these hub genes in
ovarian tumor and normal ovarian tissues was examined
using the Human protein profile analysis website, all
immunohistochemical images were obtained from this
website (https://www.proteinatlas.org/).

The immunohistochemistry method used in this website is to
label the antibody with DAB (3,3′-diaminobenzidine), and the
antibody combines with the corresponding antigen to produce
brown staining.

2.6 Survival and immune infiltration assays

We used the Kaplan-Meier mapper online website to
investigate the association between the expression of the
5 hub genes and OS in 1657 ovarian cancer patients and
PFS in 1436 ovarian cancer patients, using a log-rank
p < 0.05 to determine significant correlations [22, 23]
(http://kmplot.com/analysis/index.php?p=service).

The Tumor IMmune Estimation Resource (TIMER) on-
line website was used to analyze the correlation between hub
gene expression and the abundance of immune infiltrates [24]
(https://cistrome.shinyapps.io/timer/).

2.7 The university of Alabama at
Birmingham cancer data analysis portal
(UALCAN) database analysis

The correlation of five hub genes with cancer stage, tumor
grade or age of ovarian cancer patients was analyzed through
the TCGA database of the UALCAN online website [25]
(https://ualcan.path.uab.edu/).

2.8 Drug target and miRNA regulatory
network analysis

The Tumor Immune System Interaction database (TISIDB)
allows tumor and immune system interaction analysis, which
was used for this study to analyze drugs targeting the hub gene
through the DrugBank database of the TISIDB online website
[26] (http://cis.hku.hk/TISIDB/index.php). MiRNet 2.0 is a
website to help users analyze the miRNA regulatory network
andwas employed to determine the targetedmiRNA regulatory
network of five hub genes separately through the miRNet 2.0
online website [27] (https://www.mirnet.ca/).

3. Results

3.1 There were many DEGs between HGSOC
and LGSOC samples
Fig. 1 presents the overall analysis process of this study. We
initially analyzed the data from GSE27651 and GSE73168
through GEO2R. The volcano plot and mean difference
plot demonstrated numerous DEGs between the HGSOC
and LGSOC samples in both GEO datasets (Fig. 2A–D).
Additionally, the UMAP plots highlighted significant overall
differences in expression profiles between HGSOC and
LGSOC samples (Fig. 2E,F). Subsequently, Venn analysis
was performed on the DEGs from the two datasets. We found
that the expression level of 265 genes in HGSOC was higher
than LGSOC, and the expression level of 423 genes was lower
than LGSOC. Therefore, 265 genes were upregulated and 423
genes were downregulated in HGSOC compared to LGSOC
in both datasets (Fig. 2G,H). Then, we identified DEGs
between HGSOC and LGSOC samples in the GSE27651
and GSE73168 datasets, and the intersected genes resulting
from the Venn analysis were selected as the DEGs for further
analysis.

3.2 GO/KEGG enrichment analysis of DEGs
In the top 20 clusters of Metascape software, we observed
distinct enriched pathways and biological processes for the
DEGs between HGSOC and LGSOC. For the 265 upregulated
DEGs in HGSOC compared to LGSOC, the main enriched
KEGG pathways were the p53 signaling pathway and focal ad-
hesion. The main enriched GO biological processes included
actin cytoskeleton organization, negative regulation of cellular
component organization, negative regulation of mitotic cell
cycle phase transition, regulation of cellular localization and
heart development, among others. Additionally, the main
enriched canonical pathwaywas the protein interaction domain
transactivation domain of tumor protein p63 (PID TAP63)
pathway, while Wiki pathways included mechano-regulation
and pathology of Yes-associated protein/transcriptional coacti-
vator with PDZ-binding motif (YAP/TAZ) via Hippo and non-
Hippo mechanisms and Prader Willi and Angelman syndrome
(Fig. 3A,B). On the other hand, for the 423 downregulated
DEGs in HGSOC compared to LGSOC, the main enriched
KEGG pathways were related to the Chemokine signaling
pathway, pathways in cancer, and lipid and atherosclerosis.
The main enriched GO biological processes included regula-
tion of cell adhesion, immune response-regulating signaling
pathway, innate immune response, response to cytokine, and
response to bacterium. Furthermore, the Reactome Gene Sets
analysis revealed associations with platelet activation, signal-
ing and aggregation, with themain enriched canonical pathway
being the PID T-cell receptor (TCR) pathway (Fig. 3C,D).
The results obtained from both KOBAS online software

and the Metascape software were consistent, showing that
the 265 upregulated DEGs were significantly enriched in the
p53 signaling pathway and Focal adhesion. Furthermore,
in addition to the phosphatidylinositol 3-kinases-protein
kinase B (PI3K-Akt) pathway, the upregulated genes showed
significant enrichment in various cancer-related pathways
(Fig. 3E). On the other hand, the 423 downregulated DEGs
were also significantly enriched in pathways in cancer and
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FIGURE 1. Flowchart showing the workflow for identifying DEGs, analyzing GO/KEGG pathways, and identification
and functional analysis of hub genes. GEO: Gene Expression Omnibus; GO: Gene ontology; KEGG: Kyoto Encylopedia
of genes and genomes; PPI: Protein-protein interaction; GEPIA: GeneExpression Profiling Interactive Analysis; UALCAN:
university of Alabama at Birmingham cancer data analysis portal.

the chemokine signaling pathway. Additionally, besides
cancer and inflammation-related pathways, the downregulated
genes were enriched in pathways such as the Rap1 signaling
pathway, cytokine-cytokine receptor interaction, EGFR
tyrosine kinase inhibitor resistance, and the PI3K-Akt
signaling pathway, among others (Fig. 3F). Based on
these findings, we performed enrichment analysis on the
significantly upregulated or downregulated DEGs using the
Metascape software and KOBAS software, respectively,
following which we identified biological processes and
signaling pathways significantly enriched in these differential
genes. The subsequent analyses focused on further screening
hub genes playing key regulatory roles among these DEGs.

3.3 Screening of hub genes by PPI network
construction and functional enrichment
analysis

The hub genes in the PPI network were identified using the
cytoHubba plugin in Cytoscape, resulting in the selection of
the top 10 hub genes (Fig. 4A,B). Subsequently, we analyzed
the genetic alterations of these 20 screened hub genes in ovar-
ian cancer patients through the cBioPortal online databases,
which revealed that 79.28% of the 584 cases exhibited gene
alterations in ovarian cancer (Fig. 4C). Additionally, we in-
vestigated the association between cases with hub gene al-
terations and survival outcomes and found that alterations in
the 20 hub genes were not significantly associated with OS
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FIGURE 2. Identification of DEGs in GSE27651 and GSE73168 from GEO datasets. (A,B) Volcano plots of mRNA
expression in GSE27651 and GSE73168. (C,D) Mean difference plot of mRNA expression in GSE27651 and GSE73168. Blue:
significantly downregulated DEGs; Black: non-DEGs; Red: significantly upregulated DEGs. (E,F) UMAP plot of the sample
distribution of GSE27651 and GSE73168. Green: LGSOC; Purple: HGSOC. (G,H) Venn analysis of DEGs in the two expression
profiles. “Up” indicates significantly upregulated DEGs in HGSOC, and “DN” indicates significantly downregulated DEGs in
HGSOC. Blue: significantly up-regulated or down-regulated genes in GSE27651; Yellow: significantly up-regulated or down-
regulated genes in GSE731681. Red: Differentially expressed genes that were up-regulated or down-regulated in the two datasets
and were defined as the differentially expressed genes in the subsequent analysis. HGSOC: high-grade serous ovarian cancer;
LGSOC: low-grade serous ovarian cancer; UMAP: Uniform Manifold Approximation and Projection.
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FIGURE 3. Functional enrichment analysis of DEGs. (A,B) Enrichment analysis of upregulated DEGs in HGSOC by
Metascape software. (C,D) Enrichment analysis of downregulated DEGs in HGSOC by Metascape software. (E) KEGG analysis
of upregulated DEGs in HGSOC by KOBAS software. (F) KEGG analysis of downregulated DEGs in HGSOC using the KOBAS
software. PID: protein interaction domain; TAP63: transactivation domain of tumor protein p63; TCR: T-cell receptor; PI3K-
Akt: phosphatidylinositol 3-kinases-protein kinase B; DEGs: differentially expressed genes; HGSOC: high-grade serous ovarian
cancer; KEGG: Kyoto Encylopedia of genes and genomes; KOBAS: KEGGOrthology-Based Annotation System; RHOGTPase:
RHO guanosine triphosphatases; EGFR: epidermal growth factor receptor.
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and PFS (Fig. 4D,E). The alteration frequencies of the 20 hub
genes are shown in Fig. 4F. Based on the above research, we
successfully screened 20 hub genes and analyzed their genetic
changes and potential correlations with patient prognosis. In
subsequent research, we further screened for additional hub
genes playing critical roles in ovarian cancer pathogenesis and
clinical outcomes.

3.4 Further screening of hub genes by
expression analysis

We used the GEPIA online software to verify the expression
of 20 hub genes. The results showed that TP53, DNA
damage-binding protein 2 (DDB2), TP53I3, cyclin dependent
kinase inhibitor 1A (CDKN1A), FDXR, cyclin D1 (CCND1),
EGFR, C-C motif chemokine ligand 5 (CCL5), C-X-C motif
chemokine ligand 10 (CXCL10), C-X-C motif chemokine
receptor 4 (CXCR4), C-X-C motif chemokine receptor 3
(CXCR3) and CXCL11 were significantly different between
ovarian tumor and normal tissues. Next, we analyzed the
protein expression of the hub genes through representative
immunohistochemical staining, and the results showed that
the protein expression levels of TP53, TP53I3, FDXR,
EGFR and CXCL11 had a similar pattern of changes to the
transcript levels (Fig. 5). Through GEPIA online software and
protein expression analysis, we identified 5 hub genes, and in
subsequent research further analyzed their relevant functions.

3.5 The expression of hub genes was related
to the prognosis of ovarian cancer

The results of the Kaplan-Meier mapper database showed that
TP53, TP53I3, FDXR and EGFRwere significantly associated
with PFS of ovarian cancer (Fig. 6A–D), while TP53, TP53I3,
FDXR and CXCL11 were significantly associated with the OS
of ovarian cancer patients (Fig. 6E–H).

3.6 The expression of hub genes was
correlated with tumor purity and immune
infiltration

The immune infiltration analysis revealed that FDXR was
positively correlated with tumor purity, while EGFR and
CXCL11 were negatively correlated with tumor purity.
TP53 and TP53I3 showed no significant correlation with
tumor purity. Additionally, TP53 expression was positively
correlated with B cell infiltration but negatively correlated
with cluster of differentiation 8 positive (CD8+) T cell and
macrophage infiltration. TP53I3 expression was positively
correlated with macrophage infiltration. CXCL11 expression
showed significant positive correlations with B cells, CD8+
T cells, cluster of differentiation 4 positive (CD4+) T
cells, macrophage, neutrophil and dendritic cell (DC) cell
infiltration. However, the expression of FDXR and EGFR
did not significantly correlate with the infiltration of several
immune cell types (Fig. 6I–M).

3.7 The expression of Hub genes was
correlated with clinicopathological features
of ovarian cancer
Analysis of the UALCAN database revealed that regarding
cancer stage, the transcript level of TP53I3 was significantly
increased in ovarian cancer stages 2 to 3. In terms of age,
TP53 expression was significantly elevated in patients aged
81–100 years compared to patients aged 41–60 years, while the
expression of CXCL11 was significantly elevated in patients
aged 41–60 years compared to patients aged 21–40 years
(Fig. 7A).

3.8 Hub gene interacts with drugs and
miRNA
Here, we identified multiple pairs of drug-gene interactions
in the TISIDB online site analysis, including genes (TP53,
EGFR and FDXR) and 34 drugs (Fig. 7B). And we analyzed
and obtained the miRNA regulatory network interacting with
CXCL11, TP53I3, FDXR, TP53 and EGFR in miRNet 2.0
online website (Fig. 7C).
Through the above research, we analyzed the correlation

between cancer prognosis, tumor purity, immune infiltration,
clinical pathological features, drug interactions and miRNA
interactions of the 5 selected hub genes. Subsequent research
indicated the specific molecular mechanisms of the five hub
genes.

4. Discussion

EOC is a heterogeneous disease, and a recent study using
non-negative matrix factorization (NMF) optimally clustered
44 ovarian cancer cell lines into five distinct transcriptomes,
representing five major ovarian cancer subtypes [9]. This
study findings further support the classification of serous tu-
mors into the HGSOC and LGSOC categories. A previous
study comparing the immunohistochemical (IHC) expression
of breast Cancer 1 (BRCA1), Ki67 and A-catenin in women
with LGSOC and HGSOC found that Ki67 expression was
significantly higher in HGSOC [28]. LGSOC exhibits distinct
epidemiological, clinical and molecular features compared to
HGSOC, yet previous research has predominantly focused on
HGSOC, neglecting the differences between these two sub-
types. In a recent study, the impact of known clinical HGSOC
prognostic factors on survival in patients with LGSOC was
assessed, revealing that most known prognostic factors for
HGSOC, except Federation International of Gynecology and
Obstetrics (FIGO) stage and complete cytoreduction, had no
effect on survival in LGSOC [29]. As research progresses
and the understanding of the differences between LGSOC
and HGSOC increases, these findings suggest that the same
treatment strategies and standards used for high-grade disease
might not be appropriate for LGSOC [30]. Thus, conducting
differential studies on different subtypes of ovarian cancer can
aid in transitioning ovarian cancer treatment from a one-size-
fits-all approach to a more precise treatment strategy based on
the specific characteristics of each subtype [31].
In this study, compared with LGSOC, we observed that

the upregulated DEGs in HGSOC samples were significantly
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FIGURE 4. Identification and genetic alterations of hub genes. (A,B) The top 10 hub genes were screened using the
CytoHubba plugin of the Cytoscape software. (C) Alterations of the 20 hub genes in serous ovarian cancer from the cBioPortal
dataset. Green: mutation; Red: amplification; Blue: deep deletion; Gray: multiple alterations. (D) Kaplan-Meier plots of overall
survival (OS) in cases with and without hub gene alterations. (E) Kaplan-Meier plots of progression-free survival (PFS) in cases
with and without hub gene alterations. (F) Alteration frequencies of hub genes in ovarian cancer from the cBioPortal dataset.
EGFR: epidermal growth factor receptor; TP53: tumor protein p53; RRM2B: ribonucleotide reductase regulatory TP53 inducible
subunit M2B; CDKN1A: cyclin dependent kinase inhibitor 1A; ZMAT3: zinc finger matrin-type 3; TP53I3: tumor protein p53-
inducible protein 3; FDXR: ferredoxin reductase; DDB2: DNA damage-binding protein 2; MDM2: murine double minute 2;
CCND1: cyclin D1; ITGAX : integrin subunit alpha X; STAT3: signal transducer and activator of transcription; PTPRC: protein
tyrosine phosphatase receptor type C; CXCR4: C-X-C motif chemokine receptor 4; PRF1: perforin-1; CXCR3: C-X-C motif
chemokine receptor 3; CXCL11: C-X-C motif chemokine ligand 11; CXCL10: C-X-C motif chemokine ligand 10; CCL5: C-C
motif chemokine ligand 5.



55

FIGURE 5. Differential hub gene analysis and tissue immunohistochemical staining. (A) Significantly differentially
expressed hub genes between ovarian tumor and normal tissues in GEPIA. (B) Representative immunohistochemical staining
of hub genes between ovarian tumor and normal tissues. OV: ovarian cancer; TP53: tumor protein p53; DDB2: Damaged-
DNA binding protein 2; TP53I3: tumor protein p53-inducible protein 3; CDKN1A: cyclin dependent kinase inhibitor 1A; FDXR:
ferredoxin reductase; CCND1: cyclin D1; EGFR: epidermal growth factor receptor; CCL5: C-C motif chemokine ligand 5;
CXCL10: C-X-C motif chemokine ligand 10; CXCR4: C-X-C motif chemokine receptor 4; CXCR3: C-X-C motif chemokine
receptor 3; CXCL11: C-X-C motif chemokine ligand 11; *: p < 0.05.

enriched in the p53 signaling pathway and focal adhesion.
TP53, a crucial tumor suppressor gene, is frequently altered
in tumors, with about half of them having TP53 mutations
or deletions, leading to dysregulation of the p53 signaling
pathway. The development of therapeutic drugs targeting the
p53 pathway has been an area of active research [32]. The
function of TP53 is to inhibit cell growth, and alterations in
TP53 result in the loss of this negative growth regulation and
a more rapid cell proliferation. Our findings suggest that
there may be differences in p53 signaling pathway activity
and related gene expression between the two SOC subtypes,
potentially contributing to the differences in drug resistance
and patient prognosis between the two subtypes. Subsequent
studies could explore new differential detection targets or ther-
apeutic agents from the p53 pathway [33]. Focal adhesion
kinase (FAK), a non-receptor tyrosine kinase, is frequently
activated in primary or metastatic cancers and is associated
with poorer clinical outcomes [34, 35]. Focal adhesions (FAs),
which are members of the Integrin adhesions family, are robust

and stable extracellular matrix contacts [36]. Previous studies
have indicated that the LIMdomain containing 2 (LIMD2)may
promote ovarian cancer proliferation and invasion by regulat-
ing the focal adhesion signaling pathway [37]. The Fanconi
anemia pathway has also been implicated in the occurrence,
invasion and metastasis of ovarian cancer tumors, as well as
the progression of ovarian cancer [38–42]. Our results suggest
a potential molecular link between the focal adhesion signaling
pathway and ovarian cancer subtypes, possibly contributing to
the distinct clinical and molecular features observed in the two
ovarian cancer subtypes.

Compared with LGSOC, the main enriched KEGG Pathway
among the 423 downregulated DEGs in HGSOC samples was
the Chemokine signaling pathway. Chemokines are a group
of small proteins that interact with cell surface receptors to
guide cells to specific locations [43]. Chemokines and their
receptor-mediated signaling pathways play important roles in
tumorigenesis and progression [44]. They are involved not
only in tumor invasion but also in promoting tumor cell pro-
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FIGURE 6. Survival and immune infiltration analysis of five hub genes. (A–D) Kaplan-Meier plots showing the expression
of hub genes significantly associated with PFS in ovarian cancer. (E–H) Kaplan-Meier plots showing the expression of hub genes
significantly associated with OS in ovarian cancer. (I–M) Correlation of the five hub genes’ expression with tumor purity and
B cell infiltration, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in ovarian cancer. CD8+:cluster
of differentiation 8 positive; CD4+:cluster of differentiation 4 positive; TP53: tumor protein p53; TP53I3: tumor protein p53-
inducible protein 3; FDXR: ferredoxin reductase; EGFR: epidermal growth factor receptor; CXCL11: C-X-C motif chemokine
ligand 11.
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FIGURE 7. Clinicopathological features, drug and miRNA interactions of hub genes in ovarian cancer. (A) Correlation
between the five hub genes and cancer stage, grade or age of ovarian cancer in the UALCAN database. (B) Interaction diagram
of TP53, EGFR, FDXR and the drugs. (C) Interaction network diagram of CXCL11, TP53I3, FDXR, TP53, EGFR and miRNA.
TCGA: The Cancer Genome Atlas; TP53: tumor protein p53; TP53I3: tumor protein p53-inducible protein 3; FDXR: ferredoxin
reductase; EGFR: epidermal growth factor receptor; CXCL11: C-X-C motif chemokine ligand 11; *: p < 0.05.

liferation and survival, regulating tumor cell senescence, pro-
moting resistance to chemotherapy and endocrine therapy, and
influencing the tumor microenvironment [45]. In this study,
the DEGs enriched in the chemokine signaling pathway were
significantly upregulated in LGSOC. Given that chemokines
may promote therapeutic resistance in cancer cells, these find-
ings could partially explain the strong resistance of LGSOC to
chemotherapy.

Next, we screened out five key hub genes (TP53, TP53I3,
FDXR, EGFR and CXCL11) through PPI network analysis
and gene and protein expression analysis, and summarized
the properties of these five genes (Table 1). Our results
revealed that high TP53 expressionwas closely associatedwith
a favorable prognosis in ovarian cancer.



58TABLE 1. Properties of the five hub genes.

Gene Molecular functions Expression
levels

compared to
normal tissue

Expression levels in
different subtypes

Association with
ovarian cancer
prognosis

Immune infiltration Defect Reference

Tumor protein
p53 (TP53)

A tumor suppressor; Inhibit cell
growth

Higher than
normal
tissues

It is higher than
low-grade serous
ovarian cancer
(LGSOC) in

high-grade serous
ovarian cancer
(HGSOC)

Closely associated
with a favorable

prognosis in ovarian
cancer in terms of
progression-free
survival (PFS) and
overall survival (OS)

Have no significant
correlation with tumor
purity; Positively

correlated with B cell
infiltration but

negatively correlated
with cluster of

differentiation 8 positive
(CD8+) T cell and

macrophage infiltration

Accelerate cell
proliferation;

Promote multidrug
resistance in ovarian

cancer and an
increased probability

of cancer cell
metastasis to the
abdominal cavity

[32, 46–48]

Tumor protein
p53-inducible
protein 3/p53
inducible gene 3
(TP53I3/PIG3)

A reactive oxygen species
inducer

Higher than
normal
tissues

It is higher than
LGSOC in HGSOC

Closely associated
with a favorable

prognosis in ovarian
cancer in terms of

PFS and OS

Have no significant
correlation with tumor
purity; Positively
correlated with

macrophage infiltration

Decrease DNA
homologous

recombination repair
rate; Enhance

cellular sensitivity to
drugs

[49–51]

Ferredoxin
reductase
(FDXR)

A mitochondrial flavoprotein;
Inhibiting iron homeostasis in

tumor cells through the
FDXR-P53 loop, leading to the

suppression of tumor
proliferation. Be implicated in
the regulation of TP53 gene

expression

Lower than
normal
tissues

It is higher than
LGSOC in HGSOC

Closely associated
with a favorable

prognosis in ovarian
cancer in terms of
PFS and OS.

Positively correlated
with tumor purity; Not
significantly correlate
with the infiltration of
several immune cell

types

Inhibited mutant
TP53 expression and
iron metabolism in

cancer cells

[52–54]
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TABLE 1. Continued.

Gene Molecular functions Expression
levels

compared to
normal tissue

Expression levels in
different subtypes

Association with
ovarian cancer
prognosis

Immune infiltration Defect Reference

Epidermal
growth factor
receptor (EGFR)

A transmembrane receptor;
Mediates signal transduction
with tyrosine kinase activity;
Upon ligand binding, EGFR
can activate various signaling
pathways, leading to cancer cell
proliferation, migration, and

invasion

Lower than
normal
tissues

It is higher than
LGSOC in HGSOC

Associated with poor
prognosis of PFS of
ovarian cancer

Negatively correlated
with tumor purity; Not
significantly correlate
with the infiltration of
several immune cell

types

Preventing the
metastasis of ovarian

cancer cells

[55–59]

C-X-C motif
chemokine ligand
11/interferon-
inducible
T-cell alpha
chemoattractant
(CXCL11/I-TAC)

A chemokine Higher than
normal
tissues

It is higher than
HGSOC in LGSOC

Closely associated
with a favorable

prognosis in ovarian
cancer in terms of

OS

Negatively correlated
with tumor purity;
Significant positive

correlations with B cells,
CD8+ T cells, cluster of
differentiation 4 positive

(CD4+) T cells,
macrophage, neutrophil
and DC cell infiltration

[60]
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However, paradoxically, the expression of TP53 in ovarian
cancer tissues was higher than in normal tissues, and its content
was significantly higher in HGSOC than in LGSOC. Notably,
although TP53 was more abundant in HGSOC, the mutation
rate of this gene in HGSOC exceeded 90%, whereas it was
less than 10% in LGSOC [46]. The accumulation of mutant
TP53 has been linked to multidrug resistance in ovarian cancer
and an increased probability of cancer cell metastasis to the
abdominal cavity [46, 47]. Therefore, it is plausible that the
high expression of this mutant TP53may contribute to the poor
prognosis of ovarian cancer. In addition, our findings revealed
that TP53 expression was higher in advanced ovarian cancer
patients, and LGSOC tended to occur in younger patients
compared to HGSOC [48], which might explain the lower
expression of TP53 in LGSOC. Our research also indicated an
interaction between TP53 and zinc, AZD 3355 and other drugs,
providing a basis for the development of TP53-related targets
and drug screening in ovarian cancer treatment. TP53I3, also
known as p53 inducible gene 3 (PIG3), is a reactive oxygen
species inducer that can be activated by the tumor suppressor
TP53 [49, 50]. Studies have reported that the absence of
TP53I3 can decrease DNA homologous recombination repair
rate, resulting in genome instability and increased suscepti-
bility to cancer development. Additionally, the absence of
TP53I3 can enhance cellular sensitivity to drugs [50, 51].
Our results also demonstrated that high TP53I3 expression
was closely associated with a favorable prognosis in ovarian
cancer in terms of PFS and OS. However, the expression of
TP53I3 in cancer tissues was higher than in normal tissues,
potentially due to transcriptional activation by TP53 [50].
Similar to TP53, TP53I3 expression increased with the age of
ovarian cancer patients, and its content was significantly higher
in HGSOC compared to LGSOC. These findings suggest a
possible correlation between LGSOC’s tendency to occur in
younger patients and the expression of TP53I3.
Studies have demonstrated that ferredoxin reductase

(FDXR), a mitochondrial flavoprotein, plays a role in
inhibiting iron homeostasis in tumor cells through the FDXR-
P53 loop, leading to the suppression of tumor proliferation.
FDXR is also implicated in the regulation of TP53 gene
expression and has been identified as a target of TP53 [52–
54]. Our study found that high FDXR expression was closely
associated with a favorable prognosis in ovarian cancer, and
the expression level of FDXR in ovarian cancer tissue was
lower than that in normal tissue. Additionally, the expression
level in high-grade serous ovarian cancer (HGSOC) was
higher than in low-grade serous ovarian cancer (LGSOC),
suggesting the existence of a regulatory loop between FDXR
and TP53. FDXR was required for both wild-type and mutant
TP53 expression, although a loss of FDXR inhibited mutant
TP53 expression and iron metabolism in cancer cells, but
not wild-type TP53 [52, 54]. The feedback regulation of the
FDXR-P53 loop might contribute to the higher expression
of FDXR in HGSOC. As previously stated, the mutation rate
of TP53 in HGSOC exceeds 90%. Our study revealed that
FDXR can be targeted by Flavin adenine dinucleotide and 2’-
monophosphoadenosine 5’-diphosphoribose. Thus, targeting
FDXR may offer a promising approach for the treatment
of HGSOC. Epidermal growth factor receptor (EGFR) is a

transmembrane receptor that mediates signal transduction
with tyrosine kinase activity [55]. Our results indicated that
EGFR was associated with poor prognosis in ovarian cancer.
Upon ligand binding, EGFR can activate various signaling
pathways, such as PI3K/Akt, mitogen-activated protein
kinase/Extracellular signal-regulated kinase (MAPK/ERK)
and signal transducer and activator of transcription (STAT)
signaling pathways, leading to cancer cell proliferation,
migration and invasion [56]. miR-7 has been shown to target
EGFR and inhibit the function of the EGFR pathway, thus
preventing the metastasis of ovarian cancer cells [57]. The
expression of EGFR in HGSOC was higher than that in
LGSOC, which may also contribute to the shorter overall
survival of HGSOC. Among these five hub genes, EGFR
interacts with more drugs, and abnormal activation of EGFR
has been closely linked to the poor prognosis of ovarian
cancer patients [58, 59]. Therefore, the development of
therapeutic strategies targeting EGFR remains an important
area of research.

CXCL11, also known as T-cell alpha chemokine (I-TAC),
is primarily induced by interferon γ and IFN-β (interferon-
beta) [60, 61] and is mainly produced by macrophages [62].
CXCL11 plays a role in the progression of various cancers.
Studies have shown that CXCL11 is highly expressed in colon
cancer tissues compared to normal tissues and is associated
with prolonged survival [63, 64]. Similarly, in breast cancer
tissues, CXCL11 is also highly expressed and has been impli-
cated in promoting breast cancer development [65]. Consistent
with the findings of Furuya et al. [62], our study demonstrated
that CXCL11 was significantly upregulated in tumor tissues
compared to normal tissues. CXCL11 has also been identified
as a predictive marker for ovarian cancer clinical outcomes
[60]. Our analysis revealed a significantly higher expression
of CXCL11 in LGSOC than in HGSOC, and the OS results
showed that high CXCL11 expression was closely associated
with a favorable prognosis in ovarian cancer, which could
be one of the reasons for the better prognosis of LGSOC
compared to HGSOC. However, there may be certain potential
limitations in our study. Firstly, the data relied on two gene
expression profiles (GSE27651 and GSE73168) from the GEO
database, which may introduce sample source inconsistencies
and potential biases. Secondly, while bioinformatics methods
were used for data analysis, the functional analysis focused
on enriched KEGG pathways related to HGSOC and LGSOC
but lacked in-depth exploration of their roles in cancer de-
velopment and treatment, as well as their impact on specific
therapeutic targets. These limitations highlight the need for
further research.

5. Conclusions

In conclusion, this study utilized bioinformatics analysis to
examine the enrichment of DEGs in HGSOC and LGSOC and
revealed promising key hub genes. The findings contribute
to a better understanding of the distinctions between LGSOC
and HGSOC and provide a foundation for future research to
further explore these differences, which could help improve
the treatments and outcomes of patients with ovarian cancer.
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