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Abstract
Background: Cervical cancer is a leading health concern for women globally,
necessitating accurate and timely diagnostic methods. While the Papanicolaou smear
(Pap smear) test remains the gold standard for cervical cancer screening, it is time-
consuming and prone to human error. This highlights the need for automated diagnostic
tools to improve efficiency and accuracy. Methods: This study evaluated the
performance of deep learning models for automating cervical cancer diagnosis using
Pap smear images. A new dataset was constructed by merging the Mendeley Liquid-
Based Cytology (LBC) dataset (963 images) and the Malhari dataset (318 images),
resulting in 1,281 images. Twenty-seven cutting-edge deep learning models, including
Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), were used
for classification. Data augmentation and transfer learning techniques were applied to
enhance model performance. Results: The majority of ViT-based models achieved a
high classification accuracy of 99.48%. Among the 13 CNN-based models evaluated,
EfficientNetV2-Small was the only model to achieve the same accuracy level. The
results demonstrate the superiority of ViT-based models in achieving high diagnostic
accuracy. Conclusions: Deep learning methods, particularly ViT-based models, show
substantial potential in automating cervical cancer diagnosis. These models can enhance
diagnostic accuracy, reduce human error, and provide timely results, thereby supporting
more efficient and reliable cervical cancer screening practices.
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1. Introduction

Cervical cancer is considered to be one of the most seri-
ous health problems for women in the world, with nearly
570,000 new cases per year, which are the main cause of deaths
from cancer [1, 2]. The main reason for this disease is the
human papillomavirus (HPV) which causes abnormal tissue
in cervical cells [3]. Despite HPV being the major factor,
other elements like smoking, Human Immunodeficiency Virus
(HIV), contraceptive pill use for a long time, andweak immune
system are also significant in the disease’s course [4]. Over
time, cervical cancer has become the fourth most common
cancer in women all around the globe, thereby highlighting the
requirements for accurate and early detection mechanisms to
improve the treatment results, increase the survival rate of the
patients, and lower the healthcare costs [5].

Screening for cervical cancer is the typical route which
includes procedures such as the Papanicolaou (Pap) smear test,
HPV testing, and liquid-based cytology [6]. In a Pap smear
test, the doctor scrapes the cells from the cervix with brushes

and then puts them on a glass slide for microscopic exami-
nation by a cytopathologist. Every slide in the case includes
thousands of cells, and the task is thinking how some cell types
become the same looking because of the size and shape of the
nuclei and cells [7]. Receiving the correct spiritual diagnose
by visually seeing these cells comes from the examination of
the cells by the best of their abilities, this sometimes makes
them to be in a bit of a rush and they might skip some things
on the slide [8]. Hence the number of incorrect diagnoses and
delayed treatments may be experienced in some cases.

The testing area might have to handle the increased number
of diagnostics that are executed to a great extent, which leads
more of the procedure to be faulty and therefore quite contrary
to the expectations of the person who is expecting it to be
further tested [9]. But, as a matter of fact, the more screening
tests are to be done the less probable it is to get things faster
and with fewer mistakes on the doctors’ side too than the
other medical professional’s show. Thus, the automation of
the diagnostic procedure becomes the far more fundamental
issue. Labor-intensive and challenging screening of the same
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cells have been identified as the main areas where people
are primarily occupied, hence, machine learning techniques
have been designed to improve the precision and speed of
cytopathologists in the interpretation of the slides [10]. These
ways are the mixture of the traditional hand-crafted features
together with the artificial intelligence learning algorithms that
are capable of detecting cervical cancer on the base of the
information received from the histograms constructed from the
images of the cells and the cell clusters [11]. A direct result of
the automation of the workload of cytology, it has become 20%
less time-consuming [12]. Shortly, cervical cancer remains a
significant health challenge worldwide, with early detection
being crucial for effective treatment and improved patient
outcomes. Traditional methods, such as Pap smear tests,
have been the gold standard for cervical cancer screening for
decades. While effective, these methods have limitations,
including variability in test results due to human error, the need
for highly skilled cytologists, and the time-consuming nature
of manual slide examination [13].
Artificial intelligence, and more specifically deep learning,

have made significant breakthroughs that not only overcome
the limitations of the practices but also offer more accurate
and reliable identification and classification of many types
of medical images, cancers as well as cervical cancers [14–
18]. The application of deep learning in medical imaging
has revolutionized healthcare, particularly in the domain of
automated disease detection and diagnosis [19, 20]. Early ad-
vancements demonstrated the potential of convolutional neural
networks (CNNs) in various medical imaging tasks, including
tumor detection, organ segmentation and disease classification
[21, 22]. Subsequent studies expanded the scope, applying
deep learning to more complex challenges and various modal-
ities such as Magnetic Resonance Imaging (MRI), Computed
Tomography (CT) scans, and histopathological images [23–
25]. CNNs and ViTs have been utilized to automatically learn
and extract relevant features from cervical cell images, leading
to improved classification outcomes [26]. CNNs are some of
the best tools for merging images, among many, as they are the
most suited in medical imaging, where they can learn features
at different levels and both low and high spatial frequency
automatically. The recent performance of the ViT models
that have beaten CNNs in classification methods dishes up an
outstanding observation. The ultimate working mechanism
of ViTs is the parallel processing of these images using the
encoder to divide the input patch. This encoder has a self-
attention module that can recognize long-range dependencies
between image patches [27].
Considering the literature is examined, the effectiveness

of deep learning in cervical cancer can be easily seen. In
some review and survey articles, it has been stated that the
effectiveness of deep learning in cervical cancer is at the
clinical level and in some studies, it has been used in the
clinic. Youneszade et al. [28] provide a comprehensive review
of deep learning applications in cervical cancer diagnosis.
They discuss various deep learning architectures and their
potential in overcoming the limitations of traditional artificial
intelligence techniques and manual screening methods. The
study emphasizes the necessity of adopting advanced deep
learning techniques to enhance the early detection of cervical

cancer, reduce false negatives, and improve overall diagnostic
precision. They also highlight the current opportunities and
challenges in this field, underscoring the importance of large-
scale, high-quality datasets for training effective deep learning
models. Sambyal and Sarwar [29] highlight that integrating
whole slide imaging (WSI) with deep learning technology has
led to significant advancements in the screening and diagnosis
of cervical cancer. Their review focuses on the evolution,
limitations, and gaps in the use of deep learning algorithms
with WSI, analyzing 37 selected studies for methodological
insights. They examine popular deep learning techniques and
current trends, recommending the application of transfer super-
vised learning. Jiang et al. [5] conducted a review highlighting
the critical role of early detection and diagnosis of cervical
cancer for effective clinical treatment and management. They
examined over 80 publications since 2016, offering a thorough
overview of deep learning-based Computer Aided Diagnosis
(CAD) methods in cervical cytology screening. The review
covers medical and biological knowledge, analyzes public
cervical cytology datasets, and discusses image analysis tech-
niques such as cell identification and abnormal cell detection.
Their work underscores the effectiveness of deep learning in
this field.
In this study, we utilized advanced computational tech-

niques to develop a robust framework for the autonomous
classification of cervical cancer cell images. By incorporating
leading CNNs and ViTs with innovative data augmentation and
transfer learning, our approach aims to achieve high accuracy
in identifying and classifying Pap smear images and their
abnormalities. The proposed system outperforms state-of-the-
art methods using publicly available datasets. This integration
of deep learning techniques holds significant potential for
enhancing diagnostic accuracy and supporting early detection
efforts in cervical cancer. Our key contributions are summa-
rized as follows:
• We enhanced the dataset for deep learning algorithms

by combining the publicly available Mendeley Liquid Based
Cytology (LBC) and Malhari datasets. This comprehensive
dataset supports the training of more reliable models and en-
sures a diverse representation of cervical cancer cell images.
• Our study evaluated leading-edge ViT-based architectures

(Swin, PiT, MobileViT, DeiT3, totaling 14 models) and
cutting-edge CNN-based architectures (MobileNetv3,
EfficientNetv2, ConvNeXt, InceptionNeXt, totaling 14
models), making this one of the most extensive studies in the
field with a total of 28 models tested.
•We utilized advanced data augmentation and transfer learn-

ing techniques to enhance the performance of these models.
Our approach demonstrated that nearly all ViT-based models,
as well as the EfficientNetv2-Small model from the CNN-
based models, achieved a high accuracy of 99.45%, exceeding
the current benchmarks in the literature.
• We conducted a comparative analysis of CNN and ViT-

based models, providing valuable insights into their relative
performance and highlighting the strengths and weaknesses of
each approach.
• To ensure clinical relevance, we split the combined dataset

into three distinct sets (train, validation, test). This structure
allowed for a more accurate evaluation of model performance
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on unseen test data, simulating real-world scenarios. The
thorough preprocessing and splitting strategy ensured that the
models were trained, validated and tested under conditions
that best reflect clinical applications, thereby enhancing their
generalization capabilities and overall reliability.
These contributions emphasize the robustness and efficiency

of our proposed approach in delivering reliable and accurate
cervical cancer classification, making it a valuable tool in
medical diagnostics.

2. Related works

Cervical cancer detection and diagnosis has been significantly
influenced by the latest deep learning technology, which has
been brought forth. Despite these advancements, several re-
search gaps remain. Models often have limited generalization
due to small, homogeneous datasets, underscoring the need
for larger, more diverse data. Many studies rely on publicly
available datasets, which may not capture real-world clinical
variability. Additionally, deep learning models’ black-box na-
ture hinders clinical trust, necessitating research on improving
model interpretability. Most current studies focus on single-
modality data, mainly Pap smear images, whereas integrating
multi-modal data, such as patient demographics and clinical
history, could enhance diagnostics. Recent developments in-
clude using transfer learning for better performance on cervical
cancer datasets and developing hybrid models that combine
CNNs and ViTs to boost accuracy.
There have been several research papers released that tackle

different deep learning methods, both showing how powerful
they are and the issues they face. The work of Sambyal
and Sarwar [29] brings focus to how deep learning models
for cervical cancer diagnosis have been changing over time,
convincing us of the rewarding models such as DenseNet
and EfficientNet. The treatment of cervical cancer through
the use of artificial intelligence is unsettled by the subjec-
tivity of the different databases and the requirement to settle
the computational costs together with data shortages. Ah-
madzadeh Sarhangi et al. [30] perform a critical analysis of
CNN making use of cytology and colposcopy images. The
impact of the change in the level of use of public datasets and
the improvement of diagnosis accuracy are the other two main
results highlighted. The paper further leads on the researchers’
innovation in ensuring a new diagnostic approach that relies
more on computerized analysis and less on manual inspection.
Kang et al. [8] have an achievement in Raman spectroscopy
when combined the very deep learning algorithms that were
applied to the most common way of detecting cervical cancer
at a very early stage in the experiment. Their findings uncover
the potential of new methods to improve sensitive and fast
diagnostics, in particular by falling upon the issue of dispro-
portionate genders and overfitting.
Pacal conducted a study demonstrating the MaxCerVixT

model’s effectiveness both offline and in real-time, highlight-
ing its high performance, low complexity and speed. The study
also examined how attention mechanisms impact the model’s
efficiency. The proposed model shows high performance, sig-
nificantly enhancing the effective diagnosis of cervical cancer
[12]. The study by Gao et al. [31] focuses on using deep

learning and adversarial networks to predict the likelihood
of treatment plan approval for high-dose-rate brachytherapy
in cervical cancer. Their approach combines dose prediction
and plan-approval networks, enhancing the accuracy and effi-
ciency of the automated treatment planning process. By utiliz-
ing adversarial networks to automate the evaluation process,
the method aims to eliminate the ambiguity and imprecision
associated with subjective planning. Mishra et al. [32] used
a quantum invasive weed optimization technique combined
with deep learning to classify cervical precancerous stages
from Pap smear images. Their method includes preprocessing
with Gabor filtering, feature extraction using SqueezeNet,
and hyperparameter tuning via optimization. They achieved
accuracy rates up to 99.09%, demonstrating the method’s high
effectiveness for cervical cancer screening and diagnosis.
Attallah [9] has designed a computer-aided diagnostic

(CAD) system that combines deep learning and handcrafted
descriptors for the diagnosis of cervical cancer. This new
approach, known as the hybrid, makes it possible to use
different domain features to enhance diagnostic accuracy
thus, showing the high performance of complex Artificial
Intelligence-based (AI-based) systems together with classical
medical image processing. The research that was carried
out proved the high performance of diagnostics, thus this
case exhibits the potential of a hybrid approach in real-
world applications of the medical field. Kalbhor et al. [33]
present a hybrid methodology for cervical cancer prediction
based on Pap smear images using pre-trained deep neural
network models for feature extraction. They utilized models
like AlexNet, ResNet-18, ResNet-50 and GoogLeNet for
extracting features, followed by training different machine
learning models on these features. The study found that
the Simple Logistic Regression model achieved the highest
accuracy of 95.14% with the AlexNet pre-trained model,
demonstrating the effectiveness of combining deep learning
with traditional machine learning classifiers for improving
diagnostic accuracy. Devaraj et al. [34] utilized a dataset of
cervical smear images to analyze and predict cervical cancer
using three advanced deep learning models: ResNet50V2,
InceptionV3 and Xception. These models were validated
through cross-validation, and their performance was assessed
using metrics such as accuracy, precision, recall and F1-score.
Among the models, ResNet50V2 demonstrated the highest
accuracy. The results indicate that deep learning techniques
can accurately classify cervical cancer, significantly improving
early diagnosis without the need for invasive procedures.
Ramu et al. [35] propose a novel approach to identify

cervical cancer risk factors by combining Long Short-Term
Memory (LSTM) with an evolutionary technique, Artificial
Bee Colony (ABC). Despite some limitations in specificity,
their model achieved a high accuracy of 98.68%, outperform-
ing models like Support Vector Machine-Principal Compo-
nent Analysis (SVM-PCA). Mathivanan et al. [36] intro-
duce a groundbreaking methodology using pre-trained deep
neural network models (AlexNet, ResNet-101, ResNet-152
and InceptionV3) for feature extraction. Fine-tuning these
models with various machine learning algorithms, ResNet-
152 achieved an impressive accuracy of 98.08%. The use
of the publicly accessible SIPaKMeD dataset enhances the
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transparency and reproducibility of their findings. This hybrid
approach combines deep learning and machine learning for
effective cervical cancer classification, enabling the extraction
of intricate image features. Pacal et al. [37] present effective
techniques for developing a more efficient diagnostic system
using advanced deep learning methods. The study applies
40 CNN-based models and over 20 ViT-based models on the
SIPaKMeDpap-smear dataset, utilizing data augmentation and
ensemble learning to enhance model accuracy. Results show
ViT-based models outperforming, and CNN models perform-
ing similarly. The study’s extensive comparison highlights its
potential for clinical implementation.
A comprehensive review of the literature indicates that deep

learning technology has substantially advanced the diagnosis
and detection of cervical cancer. Numerous studies underscore
the high accuracy achieved by deep learning models, thereby
diminishing the dependence onmanual examination. Research
in image processing and data analysis suggests that the uti-
lization of public datasets can improve diagnostic precision.
Furthermore, integrating deep learning algorithmswith various
imaging techniques facilitates the early detection of cancer.
These advancements affirm the efficacy of deep learning as
a robust tool for the swift and accurate diagnosis of cervical
cancer.

3. Materials and methods

3.1 Datasets
Deep learning algorithms require substantial amounts of data
to be effective. The performance of these models is heavily
dependent on the dataset’s quality and size. Small datasets
may lead to overfitting and poor generalization, while larger
datasets enable better generalization and model performance.
In cervical cancer diagnosis, datasets with cytology-based Pap
smear images are rare and typically small. This scarcity limits
the effectiveness and generalizability of deep learning models,
as highlighted in the literature. In this study, we utilized the
publicly available Mendeley LBC [38] and Malhari datasets
[39] to train and evaluate deep learning algorithms. The
Mendeley LBC dataset comprises 963 images, and theMalhari
dataset includes 318 images, resulting in a combined total of
1281 images. To enhance the generalization ability of the deep
learning models, we combined both datasets as each is small
in scale. By merging these datasets, we aimed to create a
more robust and comprehensive dataset. Additionally, these
datasets are more recent compared to other available datasets.
This approach is critical for improving the performance of deep
learning models and achieving more accurate predictions.
LBC is a method used in cervical cancer screening and

is a variation of the Papanicolaou (Pap) smear test [40]. In
LBC, cervical cells are collected and preserved in a liquid
medium before being examined under a microscope. The
results of this test are typically classified according to the
Bethesda System. In this study, the publicly available data
consisted of four classes, so the deep learning algorithms were
trained on these four classes. The classes used are: NILM
(Negative for Intraepithelial Lesion or Malignancy), LSIL
(Low-grade Squamous Intraepithelial Lesion), HSIL (High-

grade Squamous Intraepithelial Lesion) and SCC (Squamous
Cell Carcinoma). NILM indicates a normal result where no
cancer or precancerous lesions are found. LSIL denotes low-
grade squamous intraepithelial lesions, which are mild cellular
abnormalities often associated with low-risk HPV infections
and are considered abnormal [41]. HSIL represents high-
grade squamous intraepithelial lesions, indicating more severe
cellular abnormalities and precancerous conditions, and is also
considered abnormal. SCC stands for squamous cell carci-
noma, indicating the presence of malignant (cancerous) cells,
and is classified as abnormal [42].

3.1.1 Mendeley LBC dataset
The Mendeley LBC dataset contains 963 cervical cytological
images collected from three reputable medical diagnostic cen-
ters [38]. With consent from 460 participants, these centers
provided 613 normal (NILM) and 350 abnormal images, in-
cluding 113 HSIL, 163 LSIL and 74 SCC images. Scanned at
40× magnification, these images are illustrated in Fig. 1 and
summarized in Table 1.

3.1.2 Malhari dataset
The Malhari dataset includes both Pap smear and colposcopy
images from the same patients. Patients consented to the use
of their data for research and development purposes under a
strict confidentiality agreement [39]. This dataset comprises
information from 32 patients. Each patient has four colposcopy
images and, in most cases, 10 image patches derived from a
single Pap test image. The Malhari dataset contains a total
of 318 images, categorized into various cervical cancer types.
The distribution of images across these categories is as follows:
40 images of HSIL, 80 images of LSIL, 158 images NILM
and 40 images of SCC. These categories comprehensively
represent different cervical conditions. Table 1 provides an
overview of the Malhari dataset. Randomly selected images
from each category in the Malhari dataset are shown in Fig. 2.

3.1.3 Combined dataset
Due to the small scale of both the Malhari and Mendeley
LBC datasets, we combined these datasets to meet the high
data requirements of deep learning algorithms. Initially, each
dataset was randomly split into 70% training, 15% validation,
and 15% test data. Then, we combined the subsets from both
datasets to create a unified dataset. By merging these datasets,
we aimed to enhance the model’s ability to generalize better on
test data and provide more objective results suitable for clinical
applications. This merging process resulted in a more robust
and comprehensive dataset comprising information from 492
patients. The combined dataset includes a total of 203 HSIL
images, 193 LSIL images, 771 NILM images and 114 SCC
images. This integration increases the data quantity and di-
versity, enhancing model generalization to new data. The
comprehensive dataset aims to improve training, leading to
more accurate and reliable cervical cancer diagnoses. Table 1
details the image distribution across categories.
Fig. 3 displays a set of pie charts showing the class dis-

tribution in each dataset used in this study. Each pie chart
represents one of the datasets (LBC, Malhari and Combined)
and illustrates the proportion of HSIL, LSIL, NILM and SCC
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FIGURE 1. Sample images for each class in theMendeley LBCdataset. HSIL:High-grade Squamous Intraepithelial Lesion;
LSIL: Low-grade Squamous Intraepithelial Lesion; NILM: Negative for Intraepithelial Lesion or Malignancy; SCC: Squamous
Cell Carcinoma.

TABLE 1. Information on each dataset used in this study.
Dataset Patient HSIL LSIL NILM SCC
LBC dataset 460 163 113 613 74
Malhari Dataset 32 40 80 158 40
Combined Dataset 492 203 193 771 114
HSIL: High-grade Squamous Intraepithelial Lesion; LSIL: Low-grade Squamous Intraepithelial Lesion; NILM: Negative
for Intraepithelial Lesion or Malignancy; SCC: Squamous Cell Carcinoma; LBC: Mendeley Liquid Based Cytology.

FIGURE 2. Sample images for each class in the Malhari dataset. HSIL: High-grade Squamous Intraepithelial Lesion;
LSIL: Low-grade Squamous Intraepithelial Lesion; NILM: Negative for Intraepithelial Lesion or Malignancy; SCC: Squamous
Cell Carcinoma.
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FIGURE 3. A set of pie chart for class-wise distribution of each dataset. HSIL: High-grade Squamous Intraepithelial
Lesion; LSIL: Low-grade Squamous Intraepithelial Lesion; NILM: Negative for Intraepithelial Lesion or Malignancy; SCC:
Squamous Cell Carcinoma; LBC: Mendeley Liquid Based Cytology.

categories within each dataset. This visual representation
provides a clear and comparative view of how each category is
distributed across the different dataset. As seen in the Fig. 3,
the combined dataset, which includes both the Mendeley LBC
and Malhari datasets, offers a comprehensive resource for
cervical cancer diagnosis research. However, it’s important
to acknowledge the class imbalance present in these datasets.
Specifically, the HSIL, LSIL, NILM and SCC categories are
not evenly distributed, with NILM images making up the ma-
jority. Class imbalance can be problematic for deep learning
models, as it might lead to biased predictions favoring the ma-
jority class. Despite this challenge, the state-of-the-art (SOTA)
deep learning models employed in this study have shown
significant advancements in addressing these imbalances. By
incorporating advanced techniques such as data augmentation,
these models can achieve high performance even when dealing
with imbalanced datasets.

3.2 Deep learning approaches
Deep learning has greatly improved cervical cancer detection
by using computer-aided analysis of Pap smear images. CNNs
and ViTs, for example, classify images and detect anomalies
with high accuracy. CNNs excel at capturing spatial hierar-
chies to detect subtle cellular abnormalities, while ViTs use
self-attentionmechanisms to capture long-range dependencies,
complementing CNNs. Pretrained models are fine-tuned on
specific cervical cancer datasets, enhancing adaptability and
precision. This makes deep learning vital for modern cervi-
cal cancer diagnostics, aiding early detection and improving
patient outcomes [43].

3.2.1 Convolutional neural networks
Convolutional Neural Networks (CNNs) are awidely used type
of artificial neural network, particularly successful in tasks like
image recognition and classification. The fundamental princi-
ple of CNNs is to process an image through multiple layers,
each extracting more complex features [44]. The structure of a
CNN consists of various layers performing specific functions
as seen in Fig. 4. The first layer is the input layer, which
stores raw data. This is followed by the convolutional layer,

where dot products between the image patches and filters are
computed to produce output volumes. This layer extracts local
features from the images. After convolution, activation func-
tions are applied. The next layer, the pooling layer, reduces
the computational load by making the output of the previous
layer more memory efficient. Pooling layers summarize the
feature maps and make them more resistant to small changes
in the input. Finally, fully connected layers flatten the output
and compute the probabilities for class predictions.
In the convolutional layer, features are extracted by perform-

ing dot products between the input image and filters. This
process is mathematically represented in Eqn. 1:

G[m,n] = (f × h)[m,n] = ∑j∑kh[j, k]f [m− j, n− k] (1)

Here, G represents the feature map, f is the input image, h is
the filter matrix, andm and n are the indices of the result matrix.
Pooling layers, commonly implemented as max pooling or
average pooling, downsample the feature maps. For instance,
max pooling takes the maximum value in each pooling region,
expressed in Eqn. 2:

G [i, j] = maxa ≤ i < a+H maxb ≤ j < b+W X [a, b] (2)

In these equations, G is the pooled feature map, X is the
input feature map, H and W are the height and width of the
pooling region, and i and j are the indices of the result matrix.
Fully connected layers connect every neuron in one layer to
every neuron in the next, with outputs calculated in Eqn. 3:

y = f(Wx + b) (3)

In this equation, y is the output vector, x is the input vector,
W is the weight matrix, b is the bias vector, and f is the activa-
tion function. Activation functions introduce non-linearity into
the model, enabling it to learn complex patterns. These mathe-
matical foundations and layer functionalities work together in
CNNs to create powerful models capable of recognizing and
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FIGURE 4. General structure of CNN architecture. HSIL: High-grade Squamous Intraepithelial Lesion; LSIL: Low-grade
Squamous Intraepithelial Lesion; NILM: Negative for Intraepithelial Lesion or Malignancy; SCC: Squamous Cell Carcinoma.

classifying complex visual patterns.

3.2.2 Vision transformer approaches
Vision Transformers (ViTs), introduced by Dosovitskiy et al.
[26], extend the Transformer model [45] to image processing
by treating an image as a sequence of patches as seen in Fig. 5.
Unlike traditional CNNs, ViTs use self-attention mechanisms
to capture the global context, eliminating the need for hand-
crafted visual features and inductive biases. This method
utilizes larger datasets and increased computational power for
enhanced performance.
The ViT structure comprises three main components: Patch

Embedding, Transformer Encoder and Classification Head. In
the Patch Embedding stage, an image is divided into small,
fixed-size patches. Each patch is flattened and then projected
to a specific dimension using a linear layer. This process
represents the image as a series of vectors. Mathematically,
patch embedding is expressed in Eqn. 4:

xp ∈ RN×(P 2C), X = xpWp (4)

Here, xp represents the matrix of flattened patches, N =
HW
p2 is the number of patches, P × P is the patch size, andWp

denotes the linear projection weights.
The Transformer Encoder consists of multiple layers, each

containing two main components: Multi-Head Self-Attention
(MHSA) and a Feed ForwardNeural Network (FFN). The Self-
Attention (SA) mechanism allows the model to learn long-
range dependencies. Each SA block computes the query, key
and value matrices and determines the attention scores in Eqn.
5:

A = softmax

(
QKT√

Dq

)
, Z = AV (5)

Here, Q = XWQ, K = XWK , and V = XWV are the matrices.
Multi-Head Self-Attention (MHSA) combines multiple SA
blocks channel-wise to model complex dependencies among
different elements in the input sequence, as formulated in Eqn.
6 and Eqn. 7.

MHSA(Q,K, V ) = [Z0, Z1,…, Zh−1]WO (6)

Zi = softmax

QWQi
(KWKi

)
T√

Dq

h

VWVi
(7)

Finally, the output of the Transformer Encoder is typically
connected to a classification head. This head consists of a fully
connected layer that produces the final classification results as
formulated in Eqn. 8:

Logits = FFN(CLS token output) (8)

Here, the Classification Token (CLS) token output is the
result from the token of the Transformer Encoder.

3.3 Data augmentation and preprocessing
Deep neural networks require a large amount of input data to
train effectively. Data augmentation is a technique that can
significantly improve the generalization capability of these
models by artificially expanding the training dataset [46].
This method provides several benefits over other training
approaches in deep learning: it helps prevent overfitting by
increasing the dataset size, enhances performance in areas
where data is limited, reduces the need for manual data
labeling, and makes the model more robust to variations in
input data, such as changes in lighting, orientation, and scale.
Common data augmentation techniques include flipping, color
space augmentation, cropping, rotation, translation and noise
injection.
In the context of cervical cancer diagnosis using Pap smear

images, data augmentation plays a crucial role. Obtaining a
sufficient number of labeled Pap smear images for accurate
diagnosis is challenging due to privacy issues and the labor-
intensive nature of manual labeling. Given the limited size of
the cervical cancer dataset, we employed various basic data
augmentation techniques including rotation, scaling, flipping,
noise injection, shear and translation. Additionally, meth-
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FIGURE 5. General structure of ViT architecture. HSIL: High-grade Squamous Intraepithelial Lesion; LSIL: Low-grade
Squamous Intraepithelial Lesion; NILM: Negative for Intraepithelial Lesion or Malignancy; SCC: Squamous Cell Carcinoma;
MLP: Multilayer Perceptron; *: Extra Learnable (Parameter).

ods such as brightness and contrast adjustment, zooming and
random cropping were used to further diversify the training
samples.
Data augmentation was performed online for all samples

during training to enhance the diversity and robustness of the
training data. This strategy ensured that themodel was exposed
to a wide range of variations, simulating real-world differences
in Pap smear images, such as varying angles, sizes and lighting
conditions of cervical cells. Moreover, we utilized state-of-
the-art deep learning techniques to effectively address the data
imbalance issue, ensuring that the model could generalize well
across all classes despite the inherent class imbalance in the
dataset.
To ensure a fair comparison across all models for cervical

cancer classification, we standardized the input size to 224 ×
224 pixels. This uniformity allows each model to process Pap
smear images of the same dimensions, facilitating consistent
performance evaluation. The combined dataset, detailed in
Table 2, was divided into training, validation, and test sets in
proportions of 70%, 15% and 15%, respectively. The dataset
comprises four classes: HSIL, LSIL, NILM and SCC, totaling
1281 images. Each class was proportionally split to maintain
balanced training and evaluation phases. Specifically, HSIL
had 203 images (142 for training, 30 for validation, 31 for test-
ing), LSIL had 193 images (135 for training, 29 for validation,
29 for testing), NILM had 771 images (540 for training, 116
for validation, 115 for testing), and SCC had 114 images (80
for training, 17 for validation, 17 for testing). This careful
distribution ensures that each phase has a representative sample
from each class.

TABLE 2. Data preprocessing of combined dataset.
Class Total Train (70%) Validation (15%) Test (15%)
HSIL 203 142 30 31
LSIL 193 135 29 29
NILM 771 540 116 115
SCC 114 80 17 17
Total 1281 897 192 192
HSIL: High-grade Squamous Intraepithelial Lesion; LSIL:
Low-grade Squamous Intraepithelial Lesion; NILM: Negative
for Intraepithelial Lesion orMalignancy; SCC: Squamous Cell
Carcinoma.

Dividing the dataset into these three parts is essential for
assessing the generalization ability of deep learning models in
cervical cancer detection. The training set is used to develop
the model, the validation set helps fine-tune its parameters, and
the test set, which remains unseen during training, provides an
objective measure of the model’s performance. This method
allows for a more accurate evaluation of how well the model
can generalize to new, unseen Pap smear images, ensuring
its effectiveness and reliability in practical applications. This
comprehensive preprocessing and splitting strategy guarantee
that the models are trained, validated and tested in conditions
that best simulate real-world scenarios, thereby enhancing their
generalization capabilities and overall performance in cervical
cancer diagnosis.
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3.4 Transfer learning
Improving the sensitivity and speed of deep learning models is
essential for accurate and efficient cervical cancer diagnosis.
Transfer learning is one of the most effective techniques to
achieve this. It involves taking a model pre-trained on a large
dataset, like ImageNet and fine-tuning it for a related, specific
task [47]. For detecting cervical cancer, transfer learning offers
significant benefits. By fine-tuning a pre-trained model, we
can tailor the general features and patterns it learned from
ImageNet to accurately identify cervical cancer cells. This
method utilizes the power of previously acquired knowledge,
enabling the model to classify or recognize cervical cancer
images more accurately and quickly. Transfer learning not
only saves time and effort in developing high-performance
models but also enhances their effectiveness in complex tasks
like image recognition. Instead of starting from scratch, which
is both time-consuming and resource-intensive, transfer learn-
ing allows us to repurpose and refine existing models. This
approach has been successful in various fields, including im-
age identification and natural language processing, especially
when training data is limited. In the context of cervical cancer
diagnosis, transfer learning maximizes the model’s potential
by utilizing knowledge from a large dataset. This results in
improved sensitivity and faster processing times, leading to
more reliable and effective diagnostic outcomes, making it an
invaluable tool in medical imaging.

3.5 Proposed approach
The proposed method for classifying cervical cancer in Pap
smear images involves a detailed multi-stage process aimed at
improving accuracy and reliability as illustrated in Fig. 6. First,
a comprehensive dataset is created by merging the Mendeley
LBC and Malhari datasets. This combined dataset undergoes
various preprocessing steps such as resizing and splitting into
training, validation, and test sets. Advanced data augmentation
techniques are then applied to increase the dataset’s diversity,
addressing the challenges of limited data and enhancing the

model’s ability to generalize.
In the transfer learning phase, the final layers of pre-trained

models are fine-tuned specifically for cervical cancer clas-
sification. This approach utilizes cutting-edge architectures
from both ViT and CNN. Advanced ViT models like Swin,
DeiT3, PiT and MobileViT, along with state-of-the-art CNN
models such as EfficientNetV2, MobileNetV3, ConvNeXt and
InceptionNeXt are employed. The selection of these 28 mod-
els was based on several criteria: The chosen models repre-
sent the latest advancements in CNN and ViT architectures
known for their superior performance in image classification
tasks. By including a variety of models, we aimed to cover a
broad spectrum of architectural innovations, from traditional
CNNs to more recent transformer-based approaches. Models
were selected based on their proven robustness and ability to
generalize well across different datasets in previous studies.
The models were chosen for their scalability, enabling them
to handle large datasets and complex medical imaging tasks
effectively. Models with a track record of success in medical
imaging, particularly in cancer diagnosis, were prioritized to
ensure relevance and applicability to our study.
To ensure a fair comparison, all models are trained with

default hyperparameters, enabling an unbiased determination
of the best-performing model. The training phase is carefully
conducted, with each model being trained on the augmented
dataset. After training, the models are evaluated on an inde-
pendent test set that was set aside earlier to ensure unbiased
performance metrics. The evaluation includes metrics such as
accuracy, precision, recall and F1-Score, providing a compre-
hensive assessment of each model’s performance.
The final step involves thoroughly comparing the models

based on these performance metrics to identify the most ef-
fective model for cervical cancer classification. This holistic
approach aims to develop an efficient and reliable classifica-
tion system for the early detection of cervical cancer, which
is crucial for improving patient outcomes and reducing mor-
tality rates. By incorporating advanced data augmentation,
transfer learning, and state-of-the-art model architectures, this

FIGURE 6. Proposed approach for robust classification of cervical pap smear images. HSIL: High-grade Squamous
Intraepithelial Lesion; LSIL: Low-grade Squamous Intraepithelial Lesion; NILM: Negative for Intraepithelial Lesion or
Malignancy; SCC: Squamous Cell Carcinoma; LBC: Mendeley Liquid Based Cytology; CNN: Convolutional Neural Networks;
ViT: Vision Transformers.
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approach offers a robust framework for cervical cancer diag-
nosis, promising significant advancements in early detection
and treatment planning.

4. Results

4.1 Experimental setup
The model training and evaluation process is a critical com-
ponent of developing robust and accurate diagnostic models
for cervical pap smear images. In our study, we employed
a comprehensive training regime incorporating transfer learn-
ing, data augmentation, and hyperparameter optimization to
achieve optimal performance.
We trained our models for a maximum of 400 epochs with a

batch size of 16 using the Stochastic Gradient Descent (SGD)
optimizer with a learning rate (lr) of 0.01 and a momentum
factor of 0.9 to accelerate convergence and avoid local minima.
Additionally, we applied a weight decay (L2 regularization) of
1× 10−4 to prevent overfitting. An early stopping mechanism
was also employed, where training was halted if there was
no improvement in validation loss for 10 consecutive epochs.
This ensured that the model training stopped at the optimal
point to prevent overfitting. The learning rate was decayed
periodically using a StepLR scheduler with a step size of 30
epochs and a gamma factor of 0.1. The input size for the
images was set to 224× 224 pixels, which is standard for many
deep learning models. The hyperparameters, including the
learning rate, weight decay, momentum, step size and gamma,
were optimized using the settings provided in the timm library,
which offers a robust set of tools for fine-tuning deep learning
models.
The models were trained and evaluated using the latest deep

learning frameworks and libraries, leveraging advanced tech-
niques to enhance their accuracy and reliability in diagnosing
cervical cancer. Specifically, we used an RTX 3090 GPU,
Ubuntu 22.04 operating system, CUDA 12.1 (NVIDIA Corpo-
ration, Santa Clara, CA, USA), cuDNN 8.9 (NVIDIACorpora-
tion, Santa Clara, CA, USA), PyTorch 2.4.0 (Meta Platforms,
Inc., Menlo Park, CA,USA) and Python 3.11 (Python Software
Foundation, Beaverton, OR, USA). The system setup included
an Intel i5 13th generation processor and 32GB of DDR5
RAM, ensuring sufficient computational power and memory
for training deep learning models.

4.2 Evaluation metrics
To assess the classification performance of various methods,
we utilized widely recognized metrics such as precision, re-
call, F1-score and accuracy. These metrics are essential for
evaluating the effectiveness of models in binary classification
tasks. Precision measures the proportion of true positive pre-
dictions out of all positive predictions, reflecting the model’s
confidence in its positive predictions. Recall indicates the
model’s ability to correctly identify all actual positive cases,
highlighting its sensitivity or true positive rate. The F1-
score is the harmonic mean of precision and recall, providing
a single metric that balances both aspects. Accuracy rep-
resents the overall correctness of the model, indicating the
proportion of true results (both positive and negative) among

all cases examined. For multi-class classification problems,
we adopt a macro-averaging approach, where each metric is
computed independently for each class and then averaged to
provide a comprehensive evaluation. Precision and recall
offer insights into the model’s confidence and discriminative
ability, respectively, while the F1-score and accuracy serve
as comprehensive evaluation metrics. All these metrics yield
values within the range of 0 to 1, with higher values indicating
better performance. By employing these metrics, we can
thoroughly compare the performance of cervical cancer classi-
fication methods, ensuring a detailed and rigorous assessment
of their effectiveness. These formulas are depicted in Eqn. 9–
Eqn. 12.

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1-Score =
(2× Precision×Recall)

(Precision+Recall)
(12)

4.3 Results of CNN-based algorithms
In this section, we present the results of various CNN-based al-
gorithms applied to the classification of cervical cancer in Pap
smear images. The models evaluated include ConvNeXt [48],
InceptionNeXt [49], EfficientNetV2 [50] and MobileNetV3
[51], each in different configurations such as Tiny, Small,
Medium and Large. The results, as shown in Table 3, provide
a comprehensive overview of the capabilities of these CNN-
based algorithms in accurately identifying and classifying cer-
vical cancer cells from Pap smear images.
As shown in Table 3, all evaluated CNN-based models

demonstrated impressive performance on previously unseen
test data from the combined dataset, achieving over 97% accu-
racy in classifying cervical cancer from Pap smear images as
depicted in Fig. 7. This high level of accuracy highlights these
models’ strong ability to detect subtle cellular abnormalities in-
dicative of cervical cancer. The models tested include various
architectures like ConvNeXt, InceptionNeXt, EfficientNetV2
and MobileNetV3, each examined in different configurations
to provide a comprehensive assessment. Within the ConvNeXt
family, the ConvNeXt-Base model stood out with the highest
performance, achieving an accuracy of 98.96% and an F1-
score of 0.9833. In contrast, the ConvNeXt-Small model
had the lowest performance in this group, with an accuracy
of 97.40% and an F1-score of 0.9614. The InceptionNeXt
models (Tiny, Small, Base) all showed similarly high per-
formance, with accuracies of 98.44% and F1-scores rang-
ing from 0.9777 to 0.9780, indicating consistent effective-
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TABLE 3. Results of CNN-based models on combined dataset.

Model Total Parameters
(Million) Accuracy Precision Recall F1-score

ConvNeXt-Tiny 27.82 0.9844 0.9753 0.9811 0.9780
ConvNeXt-Small 49.46 0.9740 0.9604 0.9645 0.9614
ConvNeXt-Base 87.57 0.9896 0.9840 0.9833 0.9833
InceptionNeXt-Tiny 25.76 0.9844 0.9818 0.9747 0.9777
InceptionNeXt-Small 47.08 0.9844 0.9818 0.9747 0.9777
InceptionNeXt-Base 83.61 0.9844 0.9753 0.9811 0.9780
EfficientNet2-Small 20.18 0.9948 0.9978 0.9914 0.9945
EfficientNet2-Medium 52.86 0.9896 0.9840 0.9833 0.9833
EfficientNet2-Large 117.24 0.9896 0.9900 0.9828 0.9860
MobileNetv3-Small-075 1.02 0.9792 0.9622 0.9854 0.9734
MobileNetv3-Small-100 1.52 0.9896 0.9839 0.9831 0.9831
MobileNetv3-Large-075 2.72 0.9792 0.9730 0.9600 0.9661
MobileNetv3-Large-100 4.21 0.9792 0.9570 0.9790 0.9672

FIGURE 7. Accuracy and F1-score of CNN-based models on combined cervical dataset.

ness across different sizes. In the EfficientNetV2 family, the
EfficientNet2-Small model excelled with outstanding scores
across all metrics (Accuracy: 99.48%, Precision: 99.78%,
Recall: 99.14%, F1-score: 0.9945). EfficientNet2-Large,
despite having the highest parameter count, also performed
very well, achieving an accuracy of 98.96% and an F1-score
of 0.9860. The MobileNetV3 models proved that even smaller
models could achieve high performance. The MobileNetv3-
Small-100 achieved the highest accuracy at 98.96%, while
MobileNetv3-Large-100 followed closely with an accuracy
of 97.92%. Model complexity is determined by the total
number of parameters (in millions), including weights and
biases. More parameters usually improve performance but
can increase overfitting. The MobileNetv3-Small-075 model,
with 1.02 million parameters, achieves 0.9792 accuracy and

0.9734 F1-score. The EfficientNet2-Large model, with 117.24
million parameters, has 0.9896 accuracy and 0.9860 F1-score.
EfficientNet2-Small, with 20.18 million parameters, achieves
the highest accuracy (0.9948) and F1-score (0.9945). This
shows that more parameters do not always guarantee the best
performance for the cervical cancer dataset.
As seen in Fig. 7, the CNN-basedmodels demonstrate strong

performance in cervical cancer classification, as reflected
by their high accuracy, precision, recall and F1-scores.
ConvNeXt and InceptionNeXt models stand out due to their
innovative architectural design that enhances feature extraction
and model efficiency. Specifically, the ConvNeXt-Tiny and
EfficientNet2-Small models show outstanding accuracy,
achieving 0.9844 and 0.9948 respectively. EfficientNet2-
Small also excels with a near-perfect F1-score of 0.9945,
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highlighting its balance between precision and recall. The
advantages of CNN-based models lie in their ability to capture
spatial hierarchies in images, making them highly effective
for medical image analysis where detecting subtle variations
is crucial. These models benefit from extensive pretraining
on large datasets, which aids in achieving robust performance
even with the relatively smaller datasets used in this study.
Furthermore, their scalable architecture allows for fine-tuning
to specific tasks, enhancing their adaptability and application
in diverse diagnostic scenarios.

4.4 Results of ViT-based algorithms
This section presents the performance outcomes of various
ViT-based models used for classifying cervical cancer from
Pap smear images. The models tested include Swin [52],
DeiT3 [53], MobileViT [54] and PiT [55], each in different
configurations to thoroughly evaluate their effectiveness. The
results, summarized in Table 4, demonstrate the high accuracy
and reliability of these advanced algorithms in detecting cer-
vical cancer, highlighting their significant potential in medical
diagnostics.
As seen in Table 4, all evaluated ViT-based models demon-

strated exceptional performance on an unseen test dataset,
which was previously separated from the combined dataset.
This high level of accuracy underscores the robust capability
of these models to detect subtle cellular abnormalities in-
dicative of cervical cancer. The evaluation includes various
architectures such as Swin, DeiT3, MobileViT and PiT, each
tested in different configurations to provide a comprehensive
assessment as depicted in Fig. 8.
Within the Swin family, all configurations (Tiny, Small,

Base, Large) achieved an impressive accuracy of 99.48%.
Notably, the Swin-Large model exhibited a slightly higher F1-
score of 0.9945 compared to the other Swin models, which
had an F1-score of 0.9888. For the DeiT3 models, the DeiT3-
Large model achieved outstanding results with an accuracy of

99.48%, precision of 0.9978, recall of 0.9919, and an F1-score
of 0.9948, making it one of the top performers. Both DeiT3-
Small and DeiT3-Medium also performed exceptionally well,
with accuracies of 98.96% and 99.48%, respectively, and F1-
scores of 0.9863 and 0.9888.
The MobileViT family demonstrated that even the smallest

models could achieve high performance, with MobileViT-xxS
attaining an accuracy of 97.92% and an F1-score of 0.9664.
TheMobileViT-S model performed exceptionally well, match-
ing the highest F1-scores of 0.9947. In the PiT family, the PiT-
Tiny model had a slightly lower performance with an accuracy
of 98.44% and an F1-score of 0.9838, while PiT-Small and PiT-
Base both achieved high accuracies of 99.48%, with F1-scores
of 0.9947 and 0.9945, respectively.
Each architecture family displayed strong performance, with

Swin models showing consistent high accuracy across all con-
figurations, and the Swin-Large model achieving the highest
F1-score within its family. The DeiT3-Large model, with its
near-perfect scores, stood out as one of the most effective
models in this evaluation. MobileViT models, particularly the
MobileViT-S, demonstrated that high performance could be
achieved with fewer parameters. Similarly, the PiT models
exhibited robust performance, with PiT-Small and PiT-Base
achieving some of the highest scores across all metrics.
Considering ViT-based models in terms of parameters, the

MobileViT-xxSmodel has the fewest parameters (0.95million)
and achieves 0.9792 accuracy and 0.9664 F1-score. In con-
trast, the DeiT3-Large model, with 303.35 million parameters,
achieves 0.9948 accuracy and 0.9948 F1-score. Similarly, the
Swin-Tiny model (27.52 million) and Swin-Large model (195
million) both reach 0.9948 accuracy. These results show that
more parameters do not always guarantee better performance.
As seen in Fig. 8, ViT-based models in delivering reliable

and accurate cervical cancer classification, making them valu-
able tools in medical diagnostics. The parameter counts of
these models also highlight their efficiency, with models like

TABLE 4. Results of ViT-based models on combined dataset.

Model Total Parameters
(Million) Accuracy Precision Recall F1-score

Swin-Tiny 27.52 0.9948 0.9861 0.9919 0.9888
Swin-Small 48.84 0.9948 0.9861 0.9919 0.9888
Swin-Base 86.75 0.9948 0.9861 0.9919 0.9888
Swin-Large 195.00 0.9948 0.9978 0.9914 0.9945
DeiT3-Small 21.68 0.9896 0.9836 0.9892 0.9863
DeiT3-Medium 38.34 0.9948 0.9861 0.9919 0.9888
DeiT3-Base 85.82 0.9948 0.9917 0.9978 0.9947
DeiT3-Large 303.35 0.9948 0.9978 0.9919 0.9948
MobileViT-xxS 0.95 0.9792 0.9664 0.9664 0.9664
MobileViT-xS 1.93 0.9896 0.9778 0.9898 0.9834
MobileViT-S 4.94 0.9948 0.9917 0.9978 0.9947
PiT-Tiny 4.59 0.9844 0.9936 0.9747 0.9838
PiT-Small 22.89 0.9948 0.9917 0.9978 0.9947
PiT-Base 72.74 0.9948 0.9978 0.9914 0.9945
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FIGURE 8. Accuracy and F1-score of ViT-based models on combined cervical dataset.

MobileViT achieving excellent performance despite having
fewer parameters, indicating their potential for efficient and
scalable deployment in clinical settings. Among all models
(both CNN-based and ViT-based), the DeiT3-Large model
provided the highest F1-score (0.9948), illustrating themodel’s
superiority in balancing accuracy, precision, recall and compu-
tational complexity. The use of ViT-based models for cervical
cancer classification from Pap smear images offers a promis-
ing approach to enhance diagnostic accuracy. The results
suggest that these models, particularly the DeiT3-Large, can
effectively identify cancerous cells with high precision and
recall. This aligns with ongoing research and development
in the field of medical diagnostics, where the integration of
advanced machine learning models can significantly improve
patient outcomes. Among all models (both CNN-based and
ViT-based), the DeiT3-Large model provided the highest accu-
racy, with many models achieving the same accuracy value of
99.48%. TheDeiT3-Largemodel also had the highest F1-score
(99.48%). The classification report showcasing the class-wise
performance of the DeiT3-Large model is presented in Table 5.
Table 5 highlights the impressive performance of the DeiT3-

Large model in diagnosing cervical cancer, breaking down
its accuracy for each class. For the HSIL class, the model
achieved a perfect precision of 100% and a recall of 96.77%,
leading to an F1-score of 98.36%. It excelled in the LSIL and
SCC classes with flawless scores of 100% across precision,
recall and F1-score. For the NILM class, the model showed
99.14% precision and 100% recall, achieving an F1-score of
99.57%. When looking at the overall performance, the DeiT3-
Largemodel shines with an average precision of 99.78%, recall
of 99.19%, and an F1-score of 99.48% on a macro level. The

weighted averages for all these metrics are also consistently
high at 99.48%. These outstanding results demonstrate that
the DeiT3-Large model is exceptionally effective and reliable
for cervical cancer diagnosis, delivering accurate predictions
across all categories. The confusion matrix for the DeiT3-
Large model, which demonstrated the highest performance in
terms of accuracy, precision and F1-score, is shown in Fig. 9.
The confusion matrix for the DeiT3-Large model illustrates

its performance in classifying cervical cancer images into four
categories: HSIL, LSIL, NILM and SCC. The matrix shows
that the model accurately classified 30 HSIL, 29 LSIL, 115
NILM and 17 SCC images, with only one misclassification
where an HSIL image was predicted as NILM. This high
level of accuracy, particularly the perfect classification in
the NILM and SCC categories, demonstrates the robustness
of the DeiT3-Large model. The visualization highlights the
model’s strong diagnostic capability, suggesting its potential
for reliable clinical application in cervical cancer diagnosis.

5. Discussion

In this study, we examined the effectiveness of deep learning
approaches in diagnosing cervical cancer, focusing particularly
on the use of modern image-based models such as CNNs
and ViTs. By combining two publicly available datasets,
Mendeley LBC and Malhari, we created a more comprehen-
sive dataset and evaluated our models solely on test data to
achieve clinically more applicable results. We enhanced the
training and performance of eachmodel through advanced data
augmentation techniques and transfer learning. Our results
show that nearly all ViT-based models and CNN-based models
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TABLE 5. Class-wise performance of the best model (DeiT3-Large).
Class Precision Recall F1-score Number of test images
HSIL 1.0000 0.9677 0.9836 31
LSIL 1.0000 1.0000 1.0000 29
NILM 0.9914 1.0000 0.9957 115
SCC 1.0000 1.0000 1.0000 17
Macro average 0.9978 0.9919 0.9948 192
Weighted average 0.9948 0.9948 0.9948 192
HSIL: High-grade Squamous Intraepithelial Lesion; LSIL: Low-grade Squamous Intraepithelial Lesion; NILM:
Negative for Intraepithelial Lesion or Malignancy; SCC: Squamous Cell Carcinoma.

FIGURE 9. Confusionmatrix of DeiT3-Largemodel. HSIL: High-grade Squamous Intraepithelial Lesion; LSIL: Low-grade
Squamous Intraepithelial Lesion; NILM: Negative for Intraepithelial Lesion or Malignancy; SCC: Squamous Cell Carcinoma.

like EfficientNetv2-Small achieved high classificationmetrics,
reaching 99.45% accuracy, with precision and recall rates
exceeding 99%. These results were consistent across both the
Mendeley LBC and Malhari datasets, indicating robust model
performance. However, we encountered specific challenges
such as class imbalance and variations in image quality. The
advanced data augmentation techniques and transfer learning
applied helped mitigate these issues, enhancing the model’s

generalization capabilities and performance consistency across
different datasets. This highlights the potential of deep learn-
ing to improve cervical cancer diagnosis, offering a reliable
and scalable solution for clinical applications. The success of
these models is attributed to ViTs’ ability to capture long-range
dependencies and contextual information more effectively,
and the efficiency of architectures like EfficientNetv2-Small
in balancing computational demands with performance. The
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impact of data augmentation and transfer learning techniques
on model generalization is noteworthy. These techniques ad-
dressed issues common in medical image classification tasks,
such as limited data access and class imbalance. The high per-
formance achieved indicates that our approaches can classify
cervical cancer reliably and accurately, thereby reducing the
workload of cytopathologists and improving early diagnosis
rates.
While our models achieved high accuracy, precision, recall

and F1-scores, the interpretability of deep learning models re-
mains a challenge. Future research should focus on developing
methods to make these models more interpretable to clinicians,
enhancing trust and facilitating their integration into clinical
workflows. Additionally, integrating multi-modal data, such
as combining Pap smear images with patient demographics
and clinical history, could provide a more comprehensive
diagnostic approach and further improve model performance.
Moreover, the adaptability of our model presents opportunities
for extension to other types of cancer and medical imaging
tasks. For instance, our approach could be tailored to detect
breast cancer, lung cancer or skin cancer by training the model
on relevant datasets. Similarly, the model could be applied to
different imaging modalities, such as MRI, CT scans, or ultra-
sound, to diagnose a broader range of conditions. By utilizing
transfer learning and fine-tuning, our model can be adapted
to these new tasks, potentially enhancing diagnostic accuracy
and clinical outcomes across various medical fields. Exploring
these potential applications and conducting further studies will
not only validate our model’s robustness but also contribute to
the advancement of deep learning in healthcare. This expanded
scope underscores the importance of continuous research to
address current limitations and unlock new possibilities for
improving patient care through innovative technology.

6. Limitations and future directions

This study has several limitations that must be acknowledged.
Firstly, the combined dataset of Mendeley LBC and Malhari,
while enhancing data diversity, remains relatively small com-
pared to real-world clinical datasets. This limitation may re-
strict the generalizability of the findings to larger andmore het-
erogeneous populations. Additionally, class imbalance within
the dataset, particularly the overrepresentation of NILM im-
ages, could have influenced the model’s performance despite
the application of data augmentation techniques.
Secondly, the study focused exclusively on Pap smear im-

ages for classification, without integrating multi-modal data
such as patient demographics or clinical history. Incorporating
these additional data types in future studies could provide a
more holistic and accurate diagnostic framework. Another
significant limitation is the black-box nature of deep learn-
ing models, which may hinder clinical adoption due to the
lack of interpretability and transparency. To address these
limitations, future research should focus on expanding the
dataset to include a more diverse and representative sample.
Developing explainable AI methods will also be crucial to
enhance trust and usability among clinicians. Additionally, ex-
ploring the integration of multi-modal data, such as combining
cytology images with clinical and demographic information,

could further improve diagnostic accuracy and applicability.
These directions will not only enhance the robustness of deep
learning models but also facilitate their integration into clinical
workflows for cervical cancer diagnosis.

7. Conclusions

In this study, we employed advanced deep learning techniques,
implementing 28 different models, including leading CNNs
and ViTs, to classify cervical cancer from Pap smear images.
To strengthen our dataset, we combined two publicly available
datasets, Mendeley LBC and Malhari, and evaluated our mod-
els exclusively on test data to ensure fairer and more clinically
relevant results. We also applied advanced data augmentation
techniques and transfer learning to improve the training and
performance of each model. Our experimental results showed
that all deep learning models achieved over 97% accuracy on
the test data. Among these, nearly all ViT-based models and
only a few CNN-based models, such as EfficientNetv2-Small,
achieved high classification metrics, with accuracy reaching
up to 99.48%. This underscores the immense potential of
deep learning in improving cervical cancer diagnosis, offering
a reliable and scalable solution for clinical applications. The
use of advanced ViT models like Swin, DeiT3, PiT and Mo-
bileViT, along with state-of-the-art CNN models such as Ef-
ficientNetV2, MobileNetV3, ConvNeXt and InceptionNeXt,
represents a significant advancement in the field, enhancing
both diagnostic accuracy and efficiency. These models have
shown to be highly effective in pre-clinical stages and suggest
that with the availability of more publicly accessible datasets,
further research in this area will be encouraged.
Future research should focus on integrating multi-modal

data, such as combining Pap smear images with patient demo-
graphics and clinical history, to provide a more comprehensive
diagnostic approach. Additionally, exploring the interpretabil-
ity of deep learning models and their integration into clinical
workflows will be crucial for practical applications. Develop-
ing larger and more diverse datasets will also be essential for
improving model generalization and reliability in real-world
settings.
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for Intraepithelial Lesion or Malignancy; SCC, Squamous
Cell Carcinoma; SGD, Stochastic Gradient Descent; SOTA,
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AVAILABILITY OF DATA AND MATERIALS

The Mendeley LBC dataset and the Malhari dataset can be
accessed at the following links, respectively: (Mendeley LBC
Dataset) (https://data.mendeley.com/datasets/zddtpgzv63/4)
and (Malhari Dataset) (https://data.mendeley.com/datasets/m5
kxdj7m36/1).
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