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Abstract
Background: The immunotherapy of endometrial cancer (EC) has gradually attracted
attention and metabolic reprogramming is associate with tumor immune infiltration. Our
goal was to use proteome analysis to examine the role of immune-relatedmetabolic genes
(IRMGs) in EC. Methods: Data-independent acquisition mass spectrometry (DIA-
MS) was performed on 20 EC patients, consisting of 10 high-grade and 10 low-grade
cancer tissues. IRMGs were screened using Spearman correlation, and an immune-
related metabolic prognosis signature (IRMPS) was constructed based on the Cancer
Genome Atlas-Uterine Corpus Endometrioid Carcinoma (TCGA-UCEC) cohort using
the least absolute shrinkage and selection operator (LASSO) regression analysis. We
also investigated differences between different risk groups in terms of prognostic value,
clinical potency, immune characteristics and therapy response. Results: In total,
285 differentially expressed genes (DEGs) were acquired via DIA-MS. Subsequently,
metabolic-DEGs and immune-DEGs were analyzed by Spearman correlation to identify
41 IRMGs. Finally, seven IRMGs, including NADH dehydrogenase (ubiquinone) 1
alpha subcomplex subunit 2 (NDUFA2), AMPK-alpha2 (PRKAA2), syntaxin binding
protein 1 (STXBP1), NADH dehydrogenase (ubiquinone) 1 beta subcomplex subunit
9 (NDUFB9), ribosomal protein S27-like (RPS27L), lysolecithin acyltransferase 2
(LPCAT2) and uridine monophosphate synthetase (UMPS) were identified to establish
a prognosis signature. The risk score was determined as an independent prognostic
indicator, and patients in the IRMPS-high group was strong linked with adverse
prognosis for EC. Additionally, IRMPS was closely related with tumor immune
infiltration. Notably, the IRMPS-low group had better immune checkpoint inhibitors
(ICI) treatment response and more sensitive to chemotherapy drugs. Conclusions: In
conclusion, IRMPS can serve as a precise prognostic tool to guide the personalized
treatment of EC patients.
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1. Introduction

Endometrial cancer (EC) is the sixth most frequent cancer
among women worldwide, with an estimated over 410,000
new cases per year, even incidence andmortality are increasing
[1]. Histopathological tumor grade categorization is vital
for managing EC, allowing for prognostic segmentation into
various risk groups, which guides surgical and adjuvant thera-
pies. Specifically, the International Federation of Gynecology
and Obstetrics defines grade 1 and 2 EECs as “low-grade”
and grade 3 EECs as “high-grade” [2]. While a good five-
year survival rate of approximately 90% is achieved by the
majority of EC patients with early diagnosis [3, 4], some
poorly-differentiated EC might return and have undesirable

overcomes. Recent years, it is a great interest of the relation-
ship among immune infiltration and metabolic reprogramming
in malignancies. Therefore, comprehensively investigating the
function of immune-related metabolic genes (IRMGs) impli-
cated in EC progression is essential for prognostic prediction
and treatment strategy.
Data-independent acquisition mass spectrometry (DIA-

MS) based proteomics provides effective methods for
assessing functional genes in cancer development. Several
investigations confirmed the importance of the tumor
microenvironment (TME) in cancer progression [5, 6]. Tumor
cells undergo metabolic reprogramming to sustain continuous
cell proliferation, a hallmark of cancer [7], which can be
driven by matrix fibroblasts, immune cells and tumor cells
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in the TME [8]. Additionally, metabolic remodeling can
impact the phenotype and function of immune cells, and
recent research has shown a strong link between phagocytosis
performed tumor-associated macrophage (TAM) and oxidative
phosphorylation (OXPHOS). Similar metabolic alterations
were observed in tumor dendritic cells, leading to poor
survival outcomes in lung cancer [9]. Previous reports have
illustrated that cancer-associated fibroblasts (CAFs) may
help with promoting tumor development and impacting on
cancer metabolism in large part [10, 11]. Platten et al. [12]
revealed that tryptophan metabolism was correlated with
immunosuppression state in several cancers. Taken together,
it is believed that tumor metabolic activity can influence the
immune microenvironment and may serve a potential target
for enhancing immunotherapy effectiveness.

At present, there are no reports on an immune-related
metabolic prognosis signature (IRMPS) for EC patients, our
main objective was to investigate the prognostic value of
IRMPS for EC patients and to identify potential emerging
therapeutic targets. We implemented a DIA-MS based
proteomic approach using fresh frozen tumor samples from
EC patients and identified 41 IRMGs. Then, using the
TCGA-UCEC dataset, we developed a prediction model
comprising 7 IRMGs: NADUFA2, PRKAA2, STXBP1,
NDUFB9, RPS27L, LPCAT2 and UMPS, based on which we
observed that different risk groups exhibited distinct survival
status, immune infiltration parameters and immunotherapy
efficacy in EC patients. Overall, our proposed signature
provides a foundation for enhancing the efficacy of treatment
in EC.

2. Materials and methods

2.1 Patients and endometrium samples

We selected a total of 20 EC patients from the First Hospital
of Lanzhou University involved 20 cancer tissues (CT, n =
20). Patients were classified as low-grade (grade 1–2, n =
10) or high-grade (grade 3, n = 10) based on the degree of
tumor differentiation. The participants satisfied the following
inclusion criteria: women≥18 years with primary endometrial
cancer. Excluded participants: (1) stage III–IV and non-
endometrioid histological type; (2) absence of detailed clin-
ical characteristics; (3) previous neoadjuvant chemotherapy,
preoperative radiation or endocrine treatment; (4) history of
malignancies or chronic diseases.

2.2 Sample preparation

We collected tissue within 30 min of removing the uterine
appendages, immediately frozen it and stored it at −80 ◦C.
Each sample of 20 µg tissues was directly dissolved in sodium
dodecylsulfate (SDS) with dithiothreitol (DTT) (SDT buffer).
Following centrifugation at 14,000g × 40 min, the protein
concentrations were determined using BCA protein assay kit
(PC0020, Solarbo, Beijing, China), then extracted and quanti-
fied peptides via filter-aided sample preparation (FASP).

2.3 Spectral library generation
A Q-Exactive orbitrap mass spectrometer equipped with an
Easy nLC 1200 chromatography system (Q Exactive-HFX,
Thermo Scientific, Waltham, MA, USA) was used to per-
form data-dependent acquisition (DDA). The peptide was first
loaded onto a 75 µm I.D. ×2 cm trap column (C18, 3 µm,
Thermo Scientific) with 95% of buffer A (0.1% formic acid
in water), then separated on a 75 µm I.D. ×25 cm analytical
column (C18, 2 µm, Thermo Scientific, Waltham, MA, USA)
with a linear gradient of buffer B (84% acetonitrile and 0.1%
formic acid). The peptide separation was carried out in 65
minutes at a flow rate of 300 nL/min using an LC procedure
that started at 8% buffer B and progressed linearly up to 100%
buffer B. Mass spectrometry (MS) spectra was collected in
DDA mode using Q-Exactive HFX, which had the following
parameters: a 300–1800 m/z scan range, a resolution of 60,000
at 200 m/z for mass spectrometry 1 (MS1), an automatic gain
control (AGC) target of 3 × 106, a maximum injection time
of 25 ms, and a dynamic exclusion of 30 s. After each MS1
scan, the top 20 precursor ions were selected for MS2. The
maximum injection time was set to 25 ms, the AGC target
value for the MS2 scan was 5 × 104, and the normalized
collision energy was 30 eV.

2.4 DIA-MS/MS analysis
The DIA-MS/MS analysis was carried out in the same way
as the DDA-MS/MS. The DIA was carried out using 30 iso-
lation windows, covering a mass range of 350–1800 m/z at
a resolution of 60,000, with an AGC target of 3 × 106 and
a maximum injection duration of 50 ms. Spectronaut (Spec-
tronautTM 14.4.200727, Biognosys, Switzerland) was used
with default parameters to accomplish protein identification
and quantification. All results were filtered based on a false
discovery rate (FDR) of 1%.

2.5 DEGs identification and functional
analysis
The criteria for identifying DEGs between high-grade cancer
tissue (HG-CT) and low-grade cancer tissue (LG-CT) groups
were “p< 0.05 and fold change (FC)>1.5 or<0.67”. The vol-
cano plot, principal component analysis (PCA), and heatmap
with hierarchical clustering analysis were conducted using R
package (R Version 3.4, R Foundation for Statistical Com-
puting, Vienna, W, Austria) to get an overview of the DEGs
characteristics. We conducted a gene enrichment analysis
using Kyoto Encyclopedia of Genes and Genomes (KEGG),
gene ontology (GO), and p< 0.05 was used as the limit for sig-
nificantly enriched functional GO terms or KEGG pathways.

2.6 Screening of IRMGs
A total of 1793 genes associated to immunity and 1804
genes related to metabolism were obtained from the ImmPort
database (https://www.immport.org/home) and previous report
[13], respectively. Then, these genes were intersected with
285 differentially expressed genes (DEGs) which identified
based on 20 fresh frozen cancer tissues to screen out 49
metabolic-DEGs and 20 immune-DEGs. To screen IRMGs,
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the Spearman correlation was utilized (p < 0.05 and |R| >
0.2).

2.7 Development of immune-related
metabolic prognosis signature (IRMPS)
Based on TCGA-UCEC dataset, we utilized the Lasso-cox re-
gression analysis to establish a prognostic model, 7 IRMGs and
their regression coefficients were obtained. The samples were
split into high-risk and low-risk group based on the risk score
median value. Subsequently, Kaplan-Meier (KM) survival
curves and time-dependent receiver operational feature (ROC)
curve analysis were performed to evaluate the predictive power
of the signature. In order to identify prognosis-related genes,
we subsequently employ univariate cox regression analysis.
Multivariate cox regression analysis is then utilized to confirm
the independence of the IRMPS model. The predictive value
of the IRMPS and other clinical variables was also evaluated
using the decision curve analysis (DCA) curve.

2.8 Construct of an IRMPS-based nomogram
According to the risk score and other clinical traits, such as
age, stage, race and tumor grade, an IRMPS-based nomogram
was created. Calibration plot was utilized to confirm the
effectiveness of the nomogram.

2.9 Gene set enrichment analysis (GSEA)
We performed GSEA to investigate potential biological path-
way and immunological activity related IRMPS. Normalized
“p < 0.05” as meaningful enriched terms.

2.10 Immune-related analysis
We used the Tumor Immune Estimation Resource 2.0 (TIMER
2.0) (http://timer.cistrome.org/) to investigate the associations
among IRMPS and six immune checkpoints in TCGA-UCEC.
Immune Cell Abundance Identifier (ImmuCellAI) online
tool (https://guolab.wchscu.cn/ImmuCellAI//#!/) was used
to estimate the abundance of 24 immune cells in UCEC.
The correlations between IRMPS model and 24 immune
cells were evaluated by Spearman. Via ESTIMATE
(https://bioinformatics.mdanderson.org/estimate/), we
downloaded the ImmuneScore, StromalScore and
ESTIMATEScore of TCGA-UCEC and calculated using
“estimate” package.

2.11 Treatment response prediction
Using the tumor immune dysfunction and exclusion (TIDE)
website (http://tide.dfci.harvard.edu/), we calculated TIDE
scores, a novel approach for assessing immune checkpoint
inhibitor (ICI) efficacy. Additionally, we investigated the
relationship between immunophenoscore (IPS) and two
risk groups in order to predict the value of this score in
predicting the effectiveness of immunotherapy (program
death protein 1 (PD-1)/program death ligand 1 (PD-L1)
blockade and/or cytotoxic T-lymphocyte-associated antigen-4
(CTLA-4) blockade) on TCGA-UCEC patients by the Cancer
Immunome Atlas (TCIA) (https://tcia.at/home).

To assess the sensibility of chemotherapy drugs, we utilized
an open accessible database named Genomics of Drug Sensi-
tivity in Cancer (GDSC) (https://www.cancerrxgene.org/), and
estimate the half-maximal inhibitory concentration (IC50) for
displaying the response to drugs.

2.12 Statistical analysis
Our data were tested for normality by using GraphPad Prism
9.0.0 software (GraphPad Software, San Diego, CA, USA).
Comparisons between the two risk groups were assessed using
Student’s t-tests (passed normality test) or Wilcoxon rank sum
tests (do not pass normality test). Statistically significant
differences were defined as *p < 0.05, **p < 0.01 and ***p
< 0.001.

3. Results

3.1 Identification of DEGs in EC and
biological function
We used DIA quantitative proteomics to analyze fresh frozen
cancer tissues of 20 EC patients, comprised 10 high-grade
and 10 low-grade. A total of 285 DEGs were collected (p <

0.05; fold change >1.5 or <0.67), including 148 up-regulated
and 137 down-regulated (Fig. 1A and Supplementary Table
1). Fig. 1B showed an expression heatmap for 285 DEGs.
The principal component analysis (PCA) was performed to
compress the protein abundances in different samples into 20
two-dimensional data points, which were then displayed using
a scatter plot (Fig. 1B). The figure revealed differences of
protein abundance patterns between several sample groups, the
PCA-derived distances can distinguish different tumor grades
of EC (Fig. 1C). Further analyses ofKEGGandGOenrichment
demonstrated that the DEGs mainly involved in metabolic
pathways, especially oxidative phosphorylation and formed
electron transport chain (Fig. 2A–D).

3.2 Identification of IRMGs in EC
We collected 1804 metabolic genes and 1793 immune genes
in order to identify the immune-related metabolic genes. Venn
diagrams were performed to find 49 metabolic-DEGs and 20
immune-DEGs (Fig. 3A,B). Then, 41 IRMGs were screen by
Spearman correlation analysis (p < 0.05, |R| > 0.2; Fig. 3C).

3.3 Development of an IRMPS with good
performance in the TCGA dataset
Afterwards, we investigated whether the IRMGs could predict
the survival of EC patients. A total of 41 IRMGs were
selected to fit a LASSO regression model based on TCGA-
UCEC (Fig. 4A). Then, we found the best lambda values (λ
= 0.0228) via 10-fold cross-validation (Fig. 4B). Finally, 7
IRMGs were constructed be a prognosis signature and the risk
scores were calculated as the following formula: risk score
= (−0.0264) × NDUFA2 + (0.2147) × PRKAA2 + (0.0146)
× STXBP1 + (0.0075) × NDUFB9 + (−0.0401) × RPS27L
+ (−0.2055) × LPCAT2 + (0.049) × UMPS. In the TCGA-
UCEC cohort, patients were divided into high-risk and low-
risk categories. Fig. 4C showed the IRMPS can discriminate
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FIGURE 1. Proteomics analysis of differentially expressed genes (DEGs) in HG-CT groups compared to LG-CT groups
of 20 EC patients. (A) Volcano plot of 285 DEGs, as follows: proteins presenting a fold change of more than 1.5 or less
than 0.67 and p < 0.05. (B) Hierarchical clustering of 285 dysregulated proteins in tumors of different grades, and labeled the
Top 10 up/down-regulated protein names. (C) PCA illustrating moderate clustering of tumor samples within each group. HG-
CT: high-grade cancer tissue; LG-CT: low-grade cancer tissue; DPY30: Dpy-30 homolog; TRIM24: Tripartite motif containing
24; NCF2: Neutrophil cytosolic factor 2; MRPL21: Mitochondrial ribosomal protein L21; GOLGA5: Golgin A5; DHRS7B:
Dehydrogenase/reductase (SDR family) member 7B; SPART (SPG20): Spastic paraplegia 20;MRPL41: Mitochondrial ribosomal
protein L41; EIF2B5: Eukaryotic translation initiation factor 2B, subunit 5; SERPINH : Serpin peptidase inhibitor, clade H (heat
shock protein 47), member 1; CMC2: C-x(9)-C motif containing 2; EPX : Eosinophil peroxidase; IGKV3D-11: Immunoglobulin
kappa variable 3D-11; C9: Complement component 9; GSTM5: Glutathione S-transferase mu 5; FGF2: Fibroblast growth factor
2; NDUFB8: NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 8; HMGN5: High mobility group nucleosome binding
domain 5; ATP5F1D: ATP synthase, H+ transporting, mitochondrial F1 complex;MCFD2: Multiple coagulation factor deficiency
2.
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FIGURE 2. Function analysis of 285 DEGs. (A–C) Gene ontology (GO) functional annotation of 285 DEGs. (D) KEGG
enrichment analysis of 285 DEGs. BP: biological process; CC: cellular component; MF: molecular function; ITGA4: Integrin
alpha-4; PECAM1: Platelet endothelial cell adhesion molecule; GNAI3: Guanine nucleotide-binding protein G (I) subunit
alpha-3; SIPA1: Signal-induced proliferation-associated protein 1; F11R: Junctional adhesion molecule A; GNG2: Guanine
nucleotide-binding protein G (I); PRKAA2: 5′-AMP-activated protein kinase catalytic subunit alpha-2; GNG10: Guanine
nucleotide-binding protein subunit gamma; MEF2D: MADS-box domain-containing protein; GNG12: Guanine nucleotide-
binding protein subunit gamma; SMAD4: Mothers against decapentaplegic homolog 4; RAF1: RAF proto-oncogene serine;
ACTG1: Actin, cytoplasmic 2; IGF2: Insulin-like growth factor II; SHC1: SHC-transforming protein 1; GSTM3: Glutathione
S-transferase Mu 3; RB1: Retinoblastoma-associated protein; SMARCA4: SWI/SNF related, matrix associated, actin dependent
regulator of chromatin, subfamily a, member 4; NDUFA2: NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit
2; MT-CYB: Mitochondrially encoded cytochrome b; MT-ND3: NADH-ubiquinone oxidoreductase chain 3; NDUFB9: NADH
dehydrogenase (ubiquinone) 1 beta subcomplex subunit 9; NDUFB7: NADH dehydrogenase (ubiquinone) 1 beta subcomplex
subunit 7; NDUFA4: NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 4; ALDOC: Fructose-bisphosphate
aldolase C; ENO3: Enolase 3 (beta, muscle); ENO2: Enolase 2 (gamma, neuronal); IDH2: Isocitrate dehydrogenase 2
(NADP+), mitochondrial; ALDH18A1: Delta-1-pyrroline-5-carboxylate synthase; PYCR1: Pyrroline-5-carboxylate reductase;
ARRB1: Arrestin, beta 1; COL4A1: Collagen alpha-1 (IV) chain; NNMT : Nicotinamide N-methyltransferase; CDS2: CDP-
diacylglycerol synthase (phosphatidate cytidylyltransferase) 2; AKR1B1: Aldo-keto reductase family 1 member B1; HAAO: 3-
hydroxyanthranilate 3,4-dioxygenase; ACAA2: Acetyl-CoA acyltransferase 2; INPP5A: Inositol-polyphosphate 5-phosphatase;
CBR3: Carbonyl reductase (NADPH); PIP4K2B: Phosphatidylinositol 5-phosphate 4-kinase type-2 beta; RENBP: GlcNAc 2-
epimerase; DPYD: Dihydropyrimidine dehydrogenase; CDIPT : CDP-diacylglycerol-inositol 3-phosphatidyltransferase; SRM :
Spermidine synthase; LPCAT2: Lysophosphatidylcholine acyltransferase 2; MTMR1: Myotubularin-related protein 1; ALG6:
Dolichyl pyrophosphateMan9GlcNAc2 alpha-1,3-glucosyltransferase;GLB1: Nitrogen regulatory protein P-II homolog;GPAA1:
Glycosylphosphatidylinositol anchor attachment 1 protein; NUDT2: Nudix (nucleoside diphosphate linked moiety X)-type motif
2; IDUA: Alpha-L-iduronidase; CANT1: Calcium activated nucleotidase 1; SORD: Sorbitol dehydrogenase; FHIT : Fragile
histidine triad; HADH : Hydroxyacyl-CoA dehydrogenase; UMPS: Uridine monophosphate synthetase; CERS2: Ceramide
synthase 2; P4HA2: Procollagen-proline 4-dioxygenase; AACS: Acetoacetyl-CoA synthetase; GALNT12: Polypeptide N-
acetylgalactosaminyltransferase 12; CA8: Carbonic anhydrase VIII; ACP2: Acid phosphatase 2, lysosomal; RDH10: Retinol
dehydrogenase 10; ELOVL5: Elongation of very long chain fatty acids protein 5.
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FIGURE 3. Screening immune-related metabolic genes (IRMGs). (A) Venn diagram of 49 metabolic-DEGs obtained based
on the intersection between metabolic genes and DEGs. (B) Venn diagram of 20 immune-DEGs obtained based on the intersection
between immune genes and DEGs. (C) The correlation between 49 metabolic-DEGs and 20 immune-DEGs in EC patients. *p
< 0.05, **p < 0.01, ***p < 0.001. Cor: correlation; ACOT11: Acyl-coenzyme A thioesterase 11; NPC1: NPC intracellular
cholesterol transporter 1; STXBP1: Syntaxin-binding protein 1; SERINC1: Serine incorporator 1; CYB5A: Cytochrome b5 heme-
binding domain-containing protein; RPS27L: Ribosomal protein S27-like; VAMP2: Synaptobrevin-2; PLEKHA1: Pleckstrin
homology domain-containing family A member 1; MED20: Mediator of RNA polymerase II transcription subunit 20; LSR:
Lipolysis-stimulated lipoprotein receptor; ACP6: Lysophosphatidic acid phosphatase type 6; DDX31: DEAD (Asp-Glu-Ala-
Asp) box polypeptide 31; GPD2: Glycerol-3-phosphate dehydrogenase, mitochondrial; RPS26: Ribosomal protein S26-like;
SLC26A2: Sulfate transporter; PDK1: Protein-serine; IGKV3-15: Immunoglobulin kappa variable 3-15; HDGFL3: PWWP
domain-containing protein; CD81: Tetraspanin; ANGPTL2: Angiopoietin-related protein 2; UBXN1: UBX domain-containing
protein 1; CTF1: Cardiotrophin-1; GBP2: Guanylate-binding protein 2; TRIM5: Tripartite motif-containing protein 5; TMSB10:
Thymosin beta-10; IRF9: Interferon regulatory factor 9; PGR: Progesterone receptor;MDK: Midkine.



53

risk scores, survival status and expression of 7 hub genes.
According to the results of the Kaplan-Meier survival analysis,
the risk-high group had a significantly lower overall survival
(OS) rate versus the risk-low group (p < 0.0001; Fig. 4D),
demonstrating the significance of the IRMPS in predicting the
prognosis of EC patients. For one, three and five years of
survival, the corresponding areas under the ROC curves (AUC)
were 0.692, 0.717 and 0.731 (Fig. 4E), indicating satisfactory
prediction model accuracy. Furthermore, a univariate cox
regression model of the expression levels of the 7 prognostic
genes (Fig. 5A) demonstrated that high expression of PRKAA2
and UMPS, along with low expression of NDUFA2, RPS27L
and LPCAT2were associated with poorer prognosis (p< 0.05;
Fig. 5B). Collectively, these findings implied that the risk-
scoring model may be used to predict the survival of EC
patients.

3.4 The signature of seven immune-related
metabolic genes might be an independent
risk factor for EC
We used univariate and multivariate cox regression analysis
to assess the independence of IRMPS for EC patients. The
univariate cox analysis revealed that age, clinical stage, race,
grade and risk score were important prognostic factors (p <

0.001; Fig. 6A). In addition, the risk score remained sig-
nificant for prognosis in the multivariate cox analysis (p =
0.001; Fig. 6B), suggesting the IRMPS can be independent
of other clinical features and should be incorporated into the
establishment of prognostic models. A nomogram was created
by merging other clinical parameters with the IRMPSmodel in
order to further investigate the predictive capability of IRMPS
(Fig. 6C). Afterward, the calibration curves showed powerful
accuracy of the nomogram (Fig. 6D). DCA curve displayed
that the prognostic value of IRMPS was superior than other
clinical factors (Fig. 6E).

3.5 GSEA analysis and immune activity with
different risk score
According to the GSEA analysis of IRMPS, several hallmarks
were enriched, including kirsten rat sarcoma viral oncogene
homolog (KRAS) signaling, xenobiotic metabolism, mitotic
spindle and cell cycle checkpoints (G2/M) (Fig. 7A). Fig. 7B
showed various of immunological pathways were related to the
risk score, with substantial enrichment in the high-risk group.
Immune infiltration is a crucial factor related to tumor

progression, and T cells are essential for the development,
spread and treatment (especially immunotherapy) of cancer
[14]. Through further comparison of the relationship between
two risk groups and 24 tumor-infiltrating lymphocytes (TILs)
abundances in EC via ImmuCellAI online tool, we observed
that neutrophils, and Th2 cells were meaningfully positively
associated with IRMPS (p < 0.001), while cytotoxic T cells
(Tc), cluster of differentiation 8 (CD8)+ T cells, exhausted T
cells (Tex), Th1 cells, T cell follicular helper (Tfh), natural
killer (NK) cells and cluster of differentiation 4 (CD4)+ T
cells were significantly negatively linked to IRMPS (p <

0.001; Fig. 8A). These findings proved that IRMPS is crucial
for the immune infiltration of EC. Additionally, by comparing

six immune checkpoint markers (PD1, CTLA4, PD-L1,
PD-L2, lymphocyte activation gene-3 (LAG3) and hepatitis
A virus-cellular receptor 2 (HAVCR2)) between the two risk
groups, we discovered that IRMPS showed a remarkable
negative correlation with CTLA4, PD-L1 and HAVCR2 (p
< 0.001; Fig. 8B), indicating that an immune-suppressive
microenvironment is more probable to form in low-risk
groups.

3.6 Analysis of immunotherapy and
chemotherapy response
Applying ESTIMATE methodology, we discovered that the
IRMPS-high group had lower immune, stromal and ESTI-
MATE scores (Fig. 9A) while having higher tumor purity
scores (Fig. 9B). The results implied that EC patients with
high-risk IRMPS are associated with an environment that is
more favorable for tumor growth. Through TCIA database, we
found that the IRMPS-low group was significantly associated
with higher IPS (p < 0.05) and IPS-CTLA4 (p < 0.05) scores
(Fig. 9C). In the IRMPSmodel, we further generated the TIDE
score to determine the effectiveness of immunotherapy. Lower
TIDE scores suggest a lower likelihood of immune evasion,
suggesting that patients may benefit from ICI therapy. In
our analysis, low TIDE prediction scores were seen in the
IRMPS-low group (p < 0.01; Fig. 9D), suggesting a better
response to ICI therapy. However, the IRMPS-high group
had higher exclusion (p< 0.001), myeloid-derived suppressor
cell (MDSC) (p < 0.001), and tumor-associated macrophage
(TAM) M2 (p < 0.05) scores, as well as a lower dysfunction
score.
Chemotherapy is themost prevalent kind of treatment for EC

patients. In our study, we forecasted the possibility that various
chemotherapy medications would be effective via the GDSC
database, then found that substantial variation in the IC50
between two risk groups among five chemotherapy medica-
tions. The IRMPS-low group were more sensitive to cisplatin,
paclitaxel, vorinostat and vinorelbine, while the IRMPS-high
group were more sensitive to bleomycin (Fig. 10).

3.7 Correlation analysis of four molecular
subtypes and IRMPS model in EC
via TCGA-UCEC dataset, 545 EC patients were divided into
four molecular subtypes, viz. polymerase-epsilon (POLE),
microsatellite instability (MSI), copy number low and copy
number high. After analyzing the correlation between four
molecular subtypes and two risk groups, the prognosis sig-
nature was constituted of 7 immune-related metabolic genes,
we found that the low-risk group had more MSI cases than
IRMPS-high group (Fig. 11A). Fig. 11B displayed that EC
patients with copy number high mainly manifested as high-
grade histological type, and were distributed in IRMPS-high
group more than IRMPS-low group. Then, we used TIMER
database to investigate the infiltration level of 6 TILs in four
molecular subtypes. The infiltration level of CD8+ T cells and
dendritic cells were significantly highest in MSI, compared
to other three molecular subtypes (Fig. 12A), indicating that
MSI type endometrial cancer had more TILs abundance. We
further explored the relationship among four molecular sub-
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FIGURE 4. Construction of the immune-related metabolic gene prognostic model in TCGA-UCEC datasets. (A)
prognostic IRMGswere evaluated using LASSO analysis and 10-fold cross validation. (B) Coefficient profile plots of 7 prognostic
IRMGs. Vertical dashed lines are plotted at the best lambda. (C) Distribution of risk score, survival status and 7 hub gene
expression. (D) Kaplan-Meier curves of overall survival between two risk groups in EC patients. (E) Time-dependent receiver
operational feature (ROC) curves analysis of the predictionmodel. HR: Hazard Rate; AUC:Area Under the Curve; CI: Confidence
Interval.

types with six immune checkpoint markers (PD-1, PD-L1, PD-
L2, CTLA4, LAG3 and HAVCR2). The results demonstrated
that the expression levels of PD-1, PD-L1, PD-L2, CTLA4
and LAG3 were meaningfully higher in MSI than other types
(Fig. 12B), suggesting that immune checkpoint inhibitors may
be effective against MSI type endometrial cancer. The four
molecular subtypes did not significantly differ in their stromal,
immune and ESTIMATE scores (Fig. 12C).

4. Discussion

As a result of early diagnosis techniques, the overall survival
of EC patients has improved significantly, 20% of EC patients
are still diagnosed with an advanced stage, which the survival
probability declines to 10% [15, 16]. Hence, it is urgently
needed for develop a prognostic model to improve the prog-
nosis prediction of EC patients. In the current study, we con-
centrated on DIA-based proteomic characteristics combined
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FIGURE 5. The hub genes of prognostic model. (A) The 7 hub genes screened out from LASSO in the TCGA-UCEC cohort
were used to generate a forest plot of a univariate cox regression model. (B) Kaplan-Meier curves ofNDUFA2, PRKAA2, RPS27L,
LPCAT2 and UMPS. High exp: High expression; Low exp: Low expression; NDUFA2: NADH dehydrogenase (ubiquinone) 1
alpha subcomplex subunit 2; PRKAA2: 5′-AMP-activated protein kinase catalytic subunit alpha-2; STXBP1: Syntaxin-binding
protein 1; NDUFB9: NADH dehydrogenase (ubiquinone) 1 beta subcomplex subunit 9; RPS27L: Ribosomal protein S27-like;
LPCAT2: Lysophosphatidylcholine acyltransferase 2; UMPS: Uridine monophosphate synthetase; OS: Overall Survival; CI:
Confidence Interval; HR: Harzad Rate.

with TCGA-UCEC dataset, we screened out 285 DEGs, 41
IRMGs were determined, and created a prognostic signature
comprising 7 hub genes for forecasting the survival and therapy
response of EC patients, thereby providing valuable insights
for personalized treatment strategies.
One of the current crucial aspects of cancer research and

therapy is metabolic reprogramming, which supports a high
proliferation rate and assure cell survival in the complex TME
[17, 18]. However, immune cell could alter metabolic path-
way and deeper impact on cellular phenotype and function
[19]. Effective immune response depends on the prolifera-
tion, differentiation, and performance of immune cell effector
activities, all of which involve metabolic reprogramming [8].
Based on the DIA-MS results, 285 DEGs were obtained, in-
cluding 148 up-regulated and 137 down-regulated. We used

DEGs intersected with immune-related and metabolic-related
genes, respectively. Then, 41 IRM-DEGs were identified via
the Spearman correlation analysis. According to the TCGA-
UCEC project, we constructed a seven-gene prognostic signa-
ture, which could effectively predict survival outcomes, with
the IRMPS-high group showing worse OS. The risk score was
identified as an independent prognostic predictor of EC by
univariate and multivariate cox regression analysis. To further
explore the performance of IRMPS, we created an IRMPS-
based nomogram incorporating age, clinic stage, race, tumor
grade and risk score. The calibration curve displayed the
nomogram was highly suitable for predicting prognosis. Also,
DCA demonstrated that the prognostic capacity of IRMPS was
more reliable than other clinical factors.
The IRMPS consisted of seven IRMGs, namely NADUFA2,
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FIGURE 6. Construction and validation of a nomogram. Univariate (A) and multivariate cox regression (B) to assess the
independence of the immune-related metabolic gene prognostic signature (IRMPS). (C) Nomogram for predicting the likelihood
of 1-, 3- and 5-year OS of UCEC patients. (D) Nomogram calibration curves to forecast the likelihood of OS at 1-, 3- and 5-year.
(E) The decision curve analysis (DCA) curves of IRMPS and other clinical characteristics for 5-year OS in UCEC patients. CI:
Confidence Interval; HR: Harzad Rate.
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FIGURE 7. Gene set enrichment analysis. (A) Gene sets of hallmarks. (B) Gene sets of immune activity. L: low-risk group;
H: high-risk group; ES: enrichment score; NP: nominal p-value.

FIGURE 8. Immune activity analysis of the IRMPS model. (A) Correlation among the relative abundances of 24 tumor-
infiltrating lymphocytes (TILs) and IRMPSmodel based on ImmuCellAI online tool. (B) Correlation between immune checkpoint
and IRMPS model, including PD1, CTLA4, PD-L1, PD-L2, LAG3 and HAVCR2. *p < 0.05, **p < 0.01, ***p < 0.001. Th1:
type I helper T cell; Th2: type II helper T cell; MAIT: mucosal-associated invariant T cell; NK: natural killer cell; NKT: natural
killer T cell; DC: dendritic cells; Tgd: gamma delta T cell; Tcm: central memory T cell; Tem: effector memory T cell; Treg:
regulatory T cell; Tr1: tregulatory1; Tc: cytotoxic T cell; CD8: cluster of differentiation 8; CD4: cluster of differentiation
4; Tex: exhausted T cell; Tfh: T cell follicular helper; PD-1: program death protein 1; PD-L1: program death ligand 1; PD-L2:
program death ligand 2; CTLA-4: cytotoxic T-lymphocyte-associated antigen-4; LAG3: lymphocyte activation gene-3; HAVCR2:
hepatitis A virus-cellular receptor 2; ns: non-significant.
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FIGURE 9. Analysis of immunotherapy response of EC patients. (A) The correlation between IRMPS model and Stromal
Score, Immune Score and Estimate Score in TCGA-UCEC. (B) The correlation between IRMPS model and tumor purity. (C)
The correlation between IRMPS model and IPS, IPS of PD-1/PD-L1 blocker, IPS of CTLA4 blocker, as well as IPS of CTLA4
and PD-1/PD-L1 blocker via TCIA website. (D) TIDE signatures predict checkpoint inhibitors (ICIs) immunotherapy response,
along with dysfunction score, exclusion score, MDSC score, CAF score, TAM M2 score in two risk groups. *p < 0.05, **p
< 0.01, ***p < 0.001. TIDE: tumor immune dysfunction and exclusion; MDSC: myeloid-derived suppressor cell; TAM MS:
tumor-associated macrophage M2; CAF: cancer-associated fibroblasts; pos: positive; neg: negative.
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FIGURE 10. Analysis of chemotherapy response of EC patients. *p< 0.05, **p< 0.01, ***p< 0.001. IC50: half-maximal
inhibitory concentration.

FIGURE 11. The correlation of four molecular subtypes, tumor grade and two risk groups in EC patients. (A)
Distribution of four molecular subtypes in high and low risk groups. (B) The Sankey diagram of four molecular subtypes, tumor
grade and two risk groups. POLE: polymerase-epsilon; MSI: microsatellite instability.
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FIGURE 12. Immune activity analysis of the four molecular subtypes in EC. (A) The infiltration level of 6 TILs in
four molecular subtypes based on TIMER database. (B) Correlation between immune checkpoint and four molecular subtypes,
including PD-1, CTLA4, PD-L1, PD-L2, LAG3 and HAVCR2. (C) The correlation between four molecular subtypes and Stromal
Score, Immune Score and Estimate Score in TCGA-UCEC. POLE: polymerase-epsilon; MSI: microsatellite instability; neg:
negtive; pos: positive.

PRKAA2, STXBP1, NDUFB9, RPS27L, LPCAT2 and UMPS,
all of which have been reported to have strong associations
with tumors. In this study, we observed that the expres-
sion levels of these five signature genes within the IRMPS
were significantly correlated with the survival outcomes of
EC patients. Specifically, high expression of PRKAA2 and
UMPS was related to poor OS, while low expression of ND-
UFA2, RPS27L and LPCAT2 was linked to favorable OS. ND-
UFA2 andNDUFB9 are auxiliary subunits of themitochondrial

membrane respiratory chain NADH dehydrogenase (complex
I). Zhigang Wang et al. [20] demonstrated through muta-
tional analysis of 14 patients that significant up-regulations
of NDUFA2, NDUFA10 and NDUFA4 were involved in the
development of head and neck paragangliomas (HNPGLs).
NDUFA2 has been found to be frequently targeted by tumori-
genic microRNAs in colorectal cancer (CRC) [21]. NDUFB9
has been reported to be down-regulated in highly metastatic
breast cancer cells [22]. Furthermore, a bioinformatics anal-
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ysis of uveal melanoma revealed that NDUFB9, acting as
an oncogene-like gene, may be a prognostic factor in this
type of cancer [23]. Similarly, NDUFB9 was detected as
an overexpressed gene that related to lymph node metastasis
in esophageal squamous cell carcinoma (ESCC) [24]. It has
been revealed that the AMP-activated protein kinase (AMPK)
component PRKAA2 is linked to adverse survival outcomes
in both EC [25] and CRC [26]. STXBP1 encodes a syntaxin-
binding protein that modulates the release of neurotransmitters
[27]. In lung cancer, STXBP1 was found to be down-regulated
but was identified as a prognosis-related gene in both lung
squamous cell carcinoma (LUSC) and lung adenocarcinoma
(LUAD) patients [28, 29]. RPS27L is a p53-repressible target
[30]. In previous studies, it was reported to be downregulated
in breast cancer [31] and CRC [32], which related with worse
prognosis. Additionally, non-small cell lung cancer (NSCLC)
showed decreased RPS27L expression and was associated with
improved chemotherapy response [33]. LPCAT2 was found
to be overexpressed in cervical, breast, colon and esophageal
cancers [34]. A study revealed that LPCAT2 upregulation was
related to adverse prognosis in cervical cancer patients [35].
UMPS has been reported to be closely linked to 5-FU-resistant
in several kinds of tumors [36–38]. Furthermore, UMPS was
found to be upregulated in hepatocellular carcinoma (HCC)
and correlated with poor prognosis in affected patients [39].
To deeper explore the biological function of IRMPS, GSEA

analysis was utilized, revealing activation of KRAS signaling,
mitotic spindle andG2M checkpoint in the IRMPS-high group.
Additionally, the high-risk group displayed a considerable
enrichment of immune-related pathways. Zhang et al. [40]
indicated that LINC01354 interacts with miR-216b to target
KRAS, promoting EC progression. The mitotic spindle is
believed to importantly act in tumor growth and development
[41]. The G2M checkpoint facilitates DNA repair and can
induce death in unrepaired cells [42].
We then detected the potential relationship between IRMPS

and immunity, particularly regarding immune infiltration, im-
mune checkpoint molecules and the TME. Numerous inves-
tigations have highlighted the importance of immune cells
in growth and prognosis of tumors [43]. Here, our findings
revealed a negative association between IRMPS and various
T cell subtypes, such as Tc, CD8+ T cells, Tex, Th1 cells,
Tfh and CD4+ T cells, indicating the strong immunoreactivity
in the IRMPS-low group. T cells infiltration are essential for
cancer occurrence, development and immunotherapy response
[44]. CD8+ T cells and Tc play crucial roles as anti-tumor
immune cells and have been shown to be involved in cell-
killing mechanisms. As we known, CD4+ T cells and T
helper cells (like Th1 and Tfh) can assist in immune effects.
Increased infiltration of T helper cells has been shown to
enhance the anti-tumor impactions of anti-CTLA-4 treatment
against melanoma [45]. Vignali et al. [46] suggested that
Tex exert the inhibitory function through CD39. The existing
literature stated TME may encourage cancer development,
spread and immunotherapy-resistant [47]. The IRMPS-low
group, according to our findings, had higher stromal, immune
and ESTIMATE scores, while IRMPS-high group had a higher
tumor purity score. In addition, MDSC and TAM M2 as
immunosuppressive cells, was found higher infiltration levels

in the IRMPS-high group, making it a contributing factor to
the worse OS observed in the IRMPS-high group compared
to the IRMPS-low group. Collectively, our findings imply
that IRMPS is essential for several TME components in EC
patients.

Nowadays, immunotherapy has gained significant attention
as a crucial treatment target for EC. Immune checkpoint mark-
ers are typical indicators assessing the therapeutic value of
immunotherapy. Our co-expression analysis demonstrated that
IRMPS was significantly negatively related to CTLA4, PD-
L1 and HAVCR2. Moreover, IPS analysis indicated that the
IRMPS-low group had a higher likelihood to benefit from
CTLA-4 blockade, suggesting a favorable response to im-
munotherapy in this group. The IRMPS-low group also ex-
hibited higher T cell infiltration, indicating a more immune-
active or “hot” tumor environment, which may promote the
efficacy of immunotherapy. Further analyses showed that
the IRMPS-low group had higher T cell dysfunction score,
while the IRMPS-high group had higher T cell exclusion score.
These findings suggest that the two risk groups employ differ-
ent immune evasion mechanisms, with the low-risk patients
predominantly exhibiting T cell dysfunction while that of the
high-risk patients operating mainly through T cell exclusion.
Apart from immune checkpoint molecules and IPS, TIDE has
emerged as a promising predictive method for ICI treatment
response. In the current study, it is discovered that the IRMPS-
low group had lower TIDE scores, indicating a higher like-
lihood of favorable responses to ICI treatment. Conversely,
the high-risk group may enhance the risk of tumor immunity
evasion and immunotherapy-resistant of EC patients.

Otherwise, chemotherapy was another common therapy op-
tion for EC. Based on the estimated IC50 results, EC patients in
the low-risk group were more sensitive to four chemo drugs:
cisplatin, paclitaxel, vorinostat and vinorelbine. In contrast,
the high-risk group demonstrated resistance to these chemo
drugs, which may account for their dismal prognosis.

After analyzing the correlation between four molecular sub-
types and two risk groups, we discovered that the IRMPS-
low group had a larger percentage of EC patients with the
MSI subtype, while the IRMPS-high group had more copy
number high EC subtype. As we known, copy number high
EC patients with the worst prognosis [48]. Previous studies
have indicated that MSI type was observed relatively high
percentages of CD8+ T cells [49] and could benefit a lot from
ICI [50, 51], which was consistent with the results we have
found. These findings confirm once again that EC patients
in the low-risk group could be the potential ICI treatment
candidates. However, EC patients in the high-risk group with
more copy number high cases had unfavorable prognosis.

Indeed, this study has limitations as well. To confirm our
findings and the robustness of this immunometabolic prog-
nostic model, numerous prospective clinical investigations are
needed. To validate this approach, additional clinical trials
would be more persuasive. To bolster our findings, more in-
depth fundamental investigations (both in vitro and in vivo)
should be planned.
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5. Conclusions

In conclusion, our study established a novel immune-related
metabolic signature in EC, which demonstrated excellent per-
formance in prognostic prediction. Strikingly, EC patients in
the IRMPS-low group exhibited higher levels of T cell infil-
tration and showed better responses to both immunotherapy
and chemotherapy. The findings suggested that the IRMPS
had the potential to predict prognosis in EC and also provides
valuable insights into the immune microenvironment status,
guiding future research in exploring therapeutic alternatives for
EC patients.
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