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Abstract
Background: Effective treatment of cervical carcinoma can be challenging due to the
lack of specific symptoms in the initial phase, as well as patients often only seeking
medical attention in the middle and late stages of the disease when symptoms become
more apparent. This study aims to address these limitations by developing and validating
a gene signature for predicting cervical squamous cell carcinoma (CESC) using both the
random forest algorithm and artificial neural network. Methods: Potential predictive
genes for CESC were identified by analyzing three matrix datasets containing tissues
from individuals with normal cervical epithelium and patients with CESC. Then, the
random forest algorithm and artificial neural network were used to construct predictive
models for CESC diagnosis, which were validated using both an independent validation
dataset and in vitro experiments. To confirm the validity of the identified genes,
protein and mRNA expression of eight disease signature genes were detected in the
two groups using Western blotting and real-time quantitative polymerase chain reaction.
Additionally, immunoinfiltration analysis was performed. Results: A total of 241
differentially expressed genes (DEGs) were identified, based on which eight genes
with the highest predictive ability were selected and used to construct a molecular
prognostic scoring system, which demonstrated exceptional predictive accuracy (Area
Under Curve (AUC) = 0.995). Validation using an independent dataset confirmed the
model’s remarkable predictive ability (AUC = 1.000). In vitro experiments demonstrated
significant differences in the expression of the eight disease signature genes between the
two groups. Immunoinfiltration analysis also revealed significant differences in immune
cell infiltration, with squamous cell carcinoma of the cervix showing a higher degree of
macrophage infiltration than normal cervical epithelium. Conclusions: Random forest
algorithm and artificial neural network were used to obtain new gene signatures, based
on which a molecular prognostic scoring system was developed to predict CESC and aid
clinical decision-making.
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1. Introduction

Cervical carcinoma (CC) is the second most commonly di-
agnosed malignancy in women, with a global incidence of
604,127 million cases and 341,831 million deaths in 2020
[1]. Approximately 75% of CC patients are histologically
diagnosed with cervical squamous cell carcinoma (CESC),
which accounts for most CC cases [2]. Unfortunately, the
lack of specific symptoms in the initial stages of CC often
results in patients presenting with prominent symptoms, such
as contact bleeding, when the disease has already progressed
to the middle or late stages, whereby treatment outcomes are

often unsatisfactory, leading to a high recurrence rate and a low
5-year survival rate [3].

Radiotherapy based on chemotherapy is the current standard
treatment approach for cervical carcinoma (CC), and neoadju-
vant chemotherapy is often administered prior to surgery or
radiotherapy. However, while this treatment approach may
show positive outcomes in the short term, there is no sub-
stantial evidence from domestic and international guidelines
and norms to demonstrate that it ultimately improves patient
prognosis [4]. Thus, there is an urgent need to develop a
reliable diagnostic model for predicting cervical squamous cell
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carcinoma (CESC) diagnosis, as this may help achieve early
disease detection. Currently, different research teams in dif-
ferent regions are exploring diagnostic biomarkers for CESC.
Zhang J et al. [5] found that C-X-C Motif Chemokine Ligand
10 (CXCL10) could be used as a potential serum biomarker
in the diagnosis of cervical squamous cell carcinoma with
squamous cell carcinoma antigen (SCC-Ag).
At present, due to the complexity of CESC pathogenesis,

few effective tools are available for the early and accurate
diagnosis of CC. However, advancements in bioinformatics
have provided new methods for clinical prediction, and ma-
chine learning techniques such as random forest algorithms and
artificial neural networks have proven effective in discovering
biomarkers and researching various disease types [6, 7]. The
development of machine learning techniques has enabled the
selection of the most significant differentially expressed genes
(DEGs) and their transformation into statistical models, which
can assist clinicians in selecting rational and effective treat-
ment options [8].
Herein, we designed this study to construct and validate

a gene signature based on the random forest algorithm and
artificial neural network for predicting the diagnosis of cervical
squamous cell carcinoma (CESC).

2. Materials and methods

2.1 Study design and data sets
Four matrix datasets (GSE9750 [9], GSE63514 [10],
GSE122697 [11] and GSE7803 [12]) containing data on the
tissues from patients with normal cervical epithelium and
CESC were selected for analysis. The GSE9750, GSE63514
and GSE122697 datasets were used as the training group,
while the GSE7803 dataset was used as the validation
group. The details of the training and validation groups
are presented in Table 1. Fig. 1 illustrates the flowchart of
the study design. The raw data for the above datasets were
sourced from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/).
The top 30 differentially expressed genes (DEGs)

significantly contributing to cervical squamous cell carcinoma
(CESC) diagnosis prediction were identified using the random
forest algorithm. Gene expression scores were then computed
based on the expression data of these DEGs in all samples
in the training group. A neural network model was created
to obtain weight values of the genes with an importance
score >2 and the greatest predictive contribution to CESC
diagnosis. Based on the obtained gene expression scores and
weight values, a molecular prognostic scoring system was
constructed. The validity of the gene model was confirmed
using the publicly available GSE7803 dataset, and ethical
review was not required as the dataset is publicly available in
the GEO database.

2.2 Identification of DEGs
Both the training and validation group data were processed
using R software (version 4.1.1, Statistics Department of the
University of Auckland, Auckland, New Zealand), which fa-
cilitated data standardization and normalization. The steps of

merging training set data are as follows: 1. Read and merge
the gene information of each training set; 2. Take log2 for
the data with large values; 3. Merge the data; 4. Output the
corrected data result. Duplicate gene probes were eliminated,
and the consolidated data was used for subsequent analysis
(Supplementary Fig. 1). The R software “Limma” [13]
package was used to eliminate the batch effect in normal and
tumor samples of the training group when identifying DEGs
based on logFC >2 (log2 (Fold Change) >2) and adj. p.value
< 0.05. A volcano plot was then created to visualize the
identified DEGs. Finally, “pheatmap” and “ggplot2” packages
of R software are used to draw heat map and volcano map of
DEGs [14].

2.3 Enrichment analysis of DEGs
To obtain comprehensive information on the biological
functions and signaling pathways associated with the
significant differentially expressed genes (DEGs) in the
training group dataset, pathway enrichment analysis and gene
ontology annotation were performed using the Metascape
online database (http://metascape.org) [15]. The results were
then grouped into clusters based on the similarity of the
significant terms, and the most prominent term was selected
to present each cluster. Gene Ontology (GO) circles showing
biological functions are drawn through the R software
“clusterProfiler”, “org.Hs.eg.db”, “enrichplot” and “GOplot”
package [16–19].

2.4 Identification of DEGs for predictive
diagnosis of CESC based on random forest
algorithm and artificial neural network
The R software “randomForest” package was used to identify
the top 30 genes that significantly impacted the diagnosis of
CESC [20], which were then used to generate a gene score
table reflecting their expression levels [21]. The expression
values of the DEGs were converted into binary values of 1
or 0 based on specific conversion criteria. If the expression
value of an upregulated gene in a sample was higher than the
median expression value of that gene across all samples, it
was assigned a value of 1; otherwise, it was assigned a value
of 0. Conversely, if the downregulated gene was higher, it
was assigned a value of 0; otherwise, it was assigned a value
of 1. The R software “neuralnet” and “NeuralNetTools” [22]
packages were used to develop a predictive model featuring
a single input layer, a single hidden layer, and a single output
layer. The hidden layer was configured with five hidden nodes,
and the output layer was designed with two nodes using a
softmax activation function. The cross-entropy error function
was set, and the optimization process involved selecting the
maximum weight value of the DEGs within the hidden layer
with values optimized accordingly [23].

2.5 Development and validation of new
gene signatures
The molecular prognostic scoring system is a novel scoring
system that has proven successful in predicting patients with
breast cancer [23] and was implemented in this study to predict
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TABLE 1. Information about the data sets used for training and validation groups.
Group GEO number Platform ID Number of normal samples Number of tumor samples
Training Group 1 GSE9750 GPL96 24 42
Training Group 2 GSE63514 GPL570 24 28
Training Group 3 GSE122697 GPL10558 5 11
Validation group GSE7803 GPL96 10 21
GEO: Gene Expression Omnibus.

FIGURE 1. The flowchart of the study design. GEO: Gene Expression Omnibus; CESC: cervical squamous cell carcinoma;
DEGs: differentially expressed genes; WB: Western blot; RT-qPCR: real-time quantitative polymerase chain reaction.

a new gene signature for the diagnosis of cervical squamous
cell carcinoma (CESC). The scoring formula for evaluating
each differentially expressed gene (DEG) was computed as
follows: system score = (gene score× gene weight). The total
system score of the eight DEGs with the highest predictive
CESC diagnostic ability was then calculated. The publicly
available GSE7803 dataset was utilized to validate the model,
and the accuracy was assessed through the area under the curve
(AUC) value of the receiver operating characteristic (ROC)

curve generated using the “pROC” package in R. An AUC
value greater than 0.8 indicated favorable accuracy, while an
AUC value >0.9 indicated outstanding accuracy of the model
[24].

2.6 Cell culture

The human cervical epithelial cell line HCerEpC (JZ-004978)
and human cervical cancer cell line Hela (CL-0101) were
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cultured in MEM medium containing 10% fetal bovine serum
and maintained in a 5% carbon dioxide (CO2) incubator at 37
◦C.

2.7 Western blot (WB) and real-time
quantitative polymerase chain reaction
(RT-qPCR)
Cell lysis buffer was used to lyse the collected HCerEpC
and Hela cells, the proteins were extracted, and the protein
concentration was determined. The protein levels of MELK
(A10794, abclonal), CRISP3 (14847-1-AP, proteintech),
GINS2 (A9172, abclonal), DTL (A12150, abclonal), C1orf112
(PA5-55082, ThermoFisher), KIF14 (A10275, abclonal),
SPINK5 (A20916, abclonal) and CELSR3 (sc-293381) were
detected by western blot (Primary Antibody Dilution Buffer
for Western Blot & Secondary Antibody Dilution Buffer
for Western Blot: Beyotime Biotechnology). Development
was performed with the aid of a supersensitive luminescent
substrate solution (Biosharp) using a protein gel imaging
analyzer (Bio-Rad). Western blot was analyzed by Image
J software (ImageJ 1.48v, National Institutes of Health,
Bethesda, MD, USA). Total RNA was extracted from
each cell and reverse-transcribed into cDNA using primer
sequences (Sangon Biotech) listed in Supplementary Table
1 and following the instructions of the detection kit (QIAGEN
kit). The reaction procedures were as follows: PCR initial
heat activation at 95 ◦C for 2 min; denaturation at 95 ◦C for
5 s, Combined annealing/extension at 60 ◦C for 30 s for a
total of 40 cycles. β-Actin was used as an internal control.
The mRNA expression of MELK, CRISP3, GINS2, DTL,
C1orf112, KIF14, SPINK5 and CELSR3 was quantified using
the 2−∆∆Ct method [25].

2.8 Immuno infiltration analysis
The CIBERSORT R script v1.03 was used to calculate the
infiltration score of each immune cell in the two groups of
samples. The R software “corrplot” [26] and “vioplot” pack-
ages were used to analyze the correlation and difference of
immune cells, following a correlation heat map and infiltration
histogram were subsequently drawn.

2.9 Statistical analysis
All statistical analyses were performed using R language soft-
ware (version 4.1.1). Statistical significance was set at p <

0.05.

3. Results

3.1 Identification of DEGs
A total of 241 DEGs were identified in the training dataset, and
their expression profiles are displayed through heat maps and
volcano plots (Fig. 2A,B). The heat map revealed that approxi-
mately half of the DEGswere highly expressed in CESC, while
the rest exhibited low expression, thereby suggesting that both
oncogenes and tumor suppressor genes were present among the
DEGs. logFC of DEGs are listed in Supplementary Table 2.

3.2 Enrichment analysis of DEGs in the
training dataset
Metascape (v3.5, The team of Yingyao Zhou, San Diego, CA,
USA) was used to perform an enrichment analysis to better
understand the functional and metabolic pathways associated
with theDEGs. The results are depicted in a clustering network
diagram and show the top 20 clusters in which the DEGs were
significantly enriched (Fig. 3A).
The most significantly enriched biological processes were

the “mitotic cell cycle process” and “keratinized envelope for-
mation”. Kyoto Encyclopedia of Genes andGenomes (KEGG)
pathway analysis showed that the DEGs were primarily in-
volved in the “vitamin D receptor pathway” and “Polo-like
Kinase 1 (PID PLK1) pathway”. Furthermore, GO circle
diagrams were drawn to identify the regulatory role of the
DEGs in the enrichment analysis. The majority of DEGs
were upregulated in “mitotic sister chromatid separation, sister
chromatid separation and organelle fission”, while they were
downregulated in “epidermal development and skin develop-
ment” (Fig. 3B).

3.3 Random forest algorithm identification
of disease signature genes
The expression data of 241 DEGs were integrated into the
random forest algorithm classifier (Fig. 4A,B). A screening
process was conducted to identify the eight disease signature
genes with importance scores above 2, which were SPINK5,
CRISP3,MELK, CELSR3, GINS2, DTL, C1orf112 and KIF14.
Except for CRISP3 and SPINK5, the remaining six genes
demonstrated high expression levels in CESC and low ex-
pression levels in the normal cervical epithelium (Fig. 4C).
The neural network showed that MELK, CRISP3, GINS2,
DTL, C1orf112, KIF14, SPINK5 and CELSR3 had good CESC
diagnostic predicting (Fig. 4D).

3.4 Artificial neural network-based
molecular prognostic scoring system
After converting the expression data of the eight disease-
specific genes with importance scores greater than 2 into “gene
scores”, the weight values of each gene were optimized using
an artificial neural network algorithm. The molecular prog-
nostic score was calculated by summing the systematic scores
(“gene score × gene weight”) of these eight signature genes
(Table 2). The molecular prognostic scores of 134 samples in
the training group were then used as predictive values, with the
presence or absence of CESC in patients as the true value. The
AUC of the new gene model was 0.995, indicating the model’s
excellent predictive ability (Fig. 5).

TABLE 2. Gene weights of the eight disease signature
genes in the training group.

Gene name Gene weights Gene name Gene weights
MELK 15.559 C1orf112 15.404
CRISP3 4.960 KIF14 1.301
GINS2 2.765 SPINK5 22.798
DTL 23.042 CELSR3 15.393
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FIGURE 2. Expression of all differential genes in the training group. (A) Heat map (Red: High expression; Blue: Low
expression). (B) Volcano map (Green: Down-regulated; Red: Up-regulated). logFC: log fold change; Sig: Significance Level.

FIGURE 3. Enrichment analysis of all differential expressed genes in the training group. (A) Cluster network plot
(Different colored squares represent different signaling pathways). (B)GO circle plot (Different colored squares represent different
biological functions).

3.5 Validation of the prediction model

To validate the prediction model developed in the training set,
an independent dataset (GSE7803) was used to evaluate its
ability to diagnose CESC in other individuals. The random
forest algorithm was utilized to select the top 30 DEGs and
disease signature genes with importance scores greater than 2
from the validation set. The results showed that these genes
were identical to those in the training set, demonstrating the
scalability and stability of the random forest algorithm. Sub-
sequently, the “gene score” and “molecular prognostic score”
of GSE7803 were calculated using the same methodology in
the testing set. The validation model generated a ROC curve

with an AUC of 1.000, indicating that the prediction model is
highly valid and stable (Fig. 6).

Next, we investigated the expression levels of the eight
CESC-characteristic genes, namely MELK, CRISP3, GINS2,
DTL, C1orf112, KIF14, SPINK5 and CELSR3, in human cer-
vical epithelial cells (HCerEpC) and human cervical carci-
noma cells (Hela). The results revealed that the expression
of the CRISP3 and SPINK5 protein and mRNA was high in
HCerEpC and low in Hela cells, while the expression levels of
MELK, GINS2, DTL, C1orf112, KIF14 and CELSR3 protein
and mRNA were significantly lower in HCerEpC but signifi-
cantly higher in Hela cells (Fig. 7A–I,8A–H, Supplementary
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FIGURE 4. Random forest algorithm for identification of disease signature genes. (A) Random forest. (B) Random forest
algorithm plot of the top 30 DEGs. (C) Heat map of DEGs with importance scores greater than 2. (D) Neural network model.

Table 3, Supplementary Fig. 2), indicating that these genes
may have a role in the development and progression of CESC
and could serve as potential targets for further research or
therapeutic intervention.

3.6 Immunoinfiltration analysis
The analysis of immune infiltration in two groups based on
the predicted model revealed a higher degree of macrophage
infiltration in squamous cell carcinoma of the cervix than
in the normal cervical epithelium (Fig. 9A). The quantita-
tive comparison of immune infiltration in the two groups
showed significant differences, based on the prediction model,
in immune cells such as T cells CD8, T cells CD4 naive, T
cells CD4 memory activated, Macrophages M0, Macrophages
M1 and Dendritic cells resting (p < 0.05, Fig. 9B). Notably,
Macrophages M0 were negatively correlated with Dendritic
cells resting (−0.41), T cells CD8 (−0.33), and activated T cells
CD4 memory (−0.14), while they were positively correlated
with Macrophages M2 (0.37) (Fig. 9C). Collectively, these
results suggest that the predicted model could be useful in an-

alyzing immune infiltration in cervical cancer and identifying
potential targets for immunotherapy.

4. Discussion

CESC is the most common pathological subtype of cervical
cancer. Despite advancements in screeningmethods, over 50%
of patients with CESC present at advanced stages, with limited
treatment options and high recurrence and mortality rates [27].
Therefore, there is a need to establish a simple and efficient
approach for the early diagnosis of CESC.
The random forest algorithm is a powerful tool for identi-

fying disease-specific characteristic genes with high accuracy.
The artificial neural network can further enhance the stability
and dependability of the model due to its high tolerance for
errors and scalability. Additionally, the molecular prognostic
scoring system is a simple and effective tool for identifying
heterogeneity and has been shown to be excellent in predicting
disease prognosis [23]. This study established an innovative
diagnostic model for CESC by integrating two machine learn-
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FIGURE 5. ROC plot of the training group evaluated of model accuracy. AUC: area under the curve; CI: confidence
interval.

FIGURE 6. ROCplot of the testing group evaluated ofmodel accuracy. AUC: area under the curve; CI: confidence interval.
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FIGURE 7. The expression of eight disease-specific proteins in human cervical epithelial cell line HCerEpC and human
cervical cancer cell line Hela was detected byWB. (A) The total. (B) MELK. (C) CRISP3. (D) GINS2. (E) DTL. (F) C1orf112.
(G) KIF14. (H) SPINK5. (I) CELSR3. **: p < 0.01; ***: p < 0.001; ****: p < 0.0001.

FIGURE 8. The expression of 8 disease characteristic genes in human cervical epithelial cells HCerEpC and human
cervical cancer cells Hela was detected by RT-qPCR. (A)MELK. (B) CRISP3. (C) GINS2. (D) DTL. (E) C1orf112. (F) KIF14.
(G) SPINK5. (H) CELSR3. *: p < 0.05; **: p < 0.01.
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FIGURE 9. Immunoinfiltration analysis. (A) Two groups of immune cell infiltration distribution. (B) Difference analysis
of immune cells between two groups. (C) The correlation between immune cells.
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ing techniques, the random forest algorithm and the artificial
neural network, and applying the molecular prognostic scoring
system. The combination of these techniques significantly
improves the model’s prediction accuracy, making it more
applicable for clinical use and facilitating clinical decision-
making and advancements. Further, the proposed model’s
validity was demonstrated through validation, and it was found
to have outstanding predictive capabilities.
The present study yielded several significant findings. First,

241 differentially expressed genes (DEGs) were identified
through consensus analysis of tissues from patients with nor-
mal cervical epithelium and cervical squamous cell carcinoma,
and eight genes were identified as disease signature genes
for cervical squamous cell carcinoma. Second, the prognos-
tic model based on the molecular prognostic scoring system
demonstrated excellent predictive ability. Third, the valida-
tion dataset confirmed the significant prediction ability of the
model. Fourth, in vitro experiments revealed significant dif-
ferences in the expression of the eight disease signature genes
between the human cervical epithelial cell line HCerEpC and
the human cervical cancer cell line Hela. Finally, immunoin-
filtration analysis showed significant differences in multiple
immune cell infiltrations between the two groups, with a higher
degree of macrophage infiltration observed in squamous cell
carcinoma of the cervix than in normal cervical epithelium.
Of the eight disease-characteristic genes obtained in this

study, only one gene has been mentioned in cervical squamous
cell carcinoma. Li X et al. [28] selected DTL as a biomarker
of cervical squamous cell carcinoma through comprehensive
multi-omics method, which is related to the development and
diagnosis of CESC. The results are consistent with the present
study.
Gene enrichment analysis revealed that many of the iden-

tified DEGs are involved in mitotic cell cycle processes and
the formation of the keratinized envelope. Previous studies
have reported that the human papillomavirus (HPV) type 16, a
high-risk causative agent of CC, infects basal epithelial cells,
interferes with their normal cell division, then colonizes viral
DNA in the nucleus of the host cell, making them divide
at a rate of 20–50 copies per cell [29, 30]. Studies have
shown that altering the HPV viral genome can delay human
foreskin keratinocyte (HFK) cell division and increase the
number of viral genomes created by HFK, thereby disrupting
the viral life cycle and leading to viral replication failure [30].
Targeting the HPV viral genome is a potential alternative
therapy for CC. This present study identified several pathways,
including the “vitamin D receptor pathway” and “PID PLK1
pathway”. Previous studies by Li X et al. [31] and Liu
J et al. [32] showed that the main metabolites of vitamin
D (25(OH)D, E2) are correlated with the clinical stage and
differentiation degree of patients with CC and may contribute
to the development and progression of CC to a certain extent.
It has also been shown [33] that 1,25(OH)2D3 binding to the
vitamin D receptor can inhibit the mitogenic effects of Insulin-
like growth factor 1 (IGF-1) and IGF-2 and result in cell
cycle arrest (G0/G1 phase). PLK1 plays multiple roles in the
cell cycle, such as controlling mitotic entry and participating
in cytoplasmic and meiotic divisions [34]. Previous studies
[35, 36] have confirmed that PLK1 overexpression is associ-

ated with tumorigenic migration, and PLK1 inhibitors may be
considered for the treatment of patients with cervical squamous
cell carcinoma. Thus, proper interpretation of gene enrichment
studies may improve our understanding of the molecular basis
of CESC and serve as a theoretical foundation for developing
novel substitute medications.
Macrophages are highly infiltrated in cervical squamous

cell carcinoma, and the infiltration degree of M0 and M1
macrophages in cervical squamous cell carcinoma is signifi-
cantly higher than that in normal cervical epithelium. Addi-
tionally, the infiltration degree of M2 macrophages in cervical
squamous cell carcinoma is higher than that in normal cervical
epithelium, although the difference between them was not
significantly different. Macrophages [37] are immune effector
cells with functional plasticity and can be classified into several
types, including M1 macrophages, which promote inflamma-
tory cytokines and chemokines and M2 macrophages, which
secrete inhibitory cytokines [38]. Previous studies have con-
firmed that macrophages have dual effects on tumors, as they
can both inhibit and promote tumor growth under specific envi-
ronments [39]. In this study, we found that both M1-type pro-
inflammatory macrophages and M2-type macrophages were
highly infiltrated in cervical squamous cell carcinoma, and
there was a significant difference in M1-type macrophage
infiltration between cervical squamous cell carcinoma and
normal cervical epithelial tissue. Previous studies have shown
[40] that M1-type tumor suppressor macrophages promote
tumor progression by transforming intoM2-typemacrophages.
Given the significant role of macrophages in the tumor mi-
croenvironment and their immunomodulatory effects on tu-
mors, targeting macrophages for immunotherapy may repre-
sent a novel therapeutic strategy for cervical squamous cell
carcinoma.
Despite the promising results reported in this study, there

are some limitations that must be considered. First, the sample
size used to develop and validate the prediction model was rel-
atively limited. Therefore, further studies with larger sample
sizes are needed to validate the findings of this study. Second,
although the model was validated using an independent dataset
and in vitro experiments, further clinical validation is neces-
sary to establish the clinical applicability of the model. Lastly,
it is important to note that the developed model is intended
only for predicting the diagnosis of CESC and cannot be used
for other purposes.

5. Conclusions

In summary, this study developed a predictionmodel for CESC
based on a molecular prognostic scoring system using the
random forest algorithm and artificial neural network. The
model’s gene signatures demonstrated good predictive ability,
which could aid clinical decision-making for the diagnosis
of CESC. Additionally, the study revealed the potential of
targeting macrophages for immunotherapy as a novel thera-
peutic strategy for cervical squamous cell carcinoma. Overall,
this research provides valuable insights into the molecular
mechanisms underlying CESC and suggests potential avenues
for developing targeted therapies for this disease.
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