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Abstract
Background: The clinical decision-making of invasive cancer (BRCA) depends on the
prediction of overall survival rate. To predict the overall survival rate of BRCA patients,
a random survival forest (RSF) model based on copper poisoning related genes (CRGs)
was established. Methods: We analyzed the expression level of CRG using cell lines.
The Cancer Genome Map (TCGA)-BRCA data is used to develop and evaluate RSF
models. We analyzed the relationships between various clinical parameters, functional
enrichment, immune cell ratio and RSF scores, as well as the IC50 of various drugs
in the Cancer Drug Sensitivity Genome 2 (GDSC2) database. Results: Compared
with normal control cell lines, CRG in BRCA cell lines is upregulated. The RSF
model performs well in predicting the overall survival rate of BRCA patients. There
were significant differences in RSF scores among BRCA patients in terms of age,
radiation status, staging, T staging, and N staging (p-value < 0.05). In BRCA samples
with higher RSF scores, hypoxia, glycolysis, mechanism target of rapamycin complex
1 (mTORC1) signaling, DNA replication, and cell cycle were all enhanced; On the
contrary, inflammatory responses, natural killer cells, mature B cell differentiation,
mediated cytotoxicity, and autophagy regulation are all inhibited. The proportion of
immature B cells, activated dendritic cells, resting memory differentiation cluster 4
(CD4) T cells, and follicle helper T cells was significantly correlated with RSF scores
(p-value < 0.05), while M2 macrophages, neutrophils, and immature CD4 T cells were
negatively correlated. Higher RSF scores were associated with increased resistance to
VX-11e_2096 and ERK_6604_1714 but greater sensitivity to Acetalax_1804, WEHI-
539_1997 and AZD5991_1720. Conclusions: The RSF score is related to various
clinical features, immune cell ratio, and drug sensitivity. It is an effective tool for
predicting the overall survival rate of BRCA patients.
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1. Introduction

Invasive breast carcinoma (BRCA) is a significant health con-
cern that affects women worldwide [1, 2]. According to data
published by the World Health Organization (WHO), the 5-
year survival rate of BRCA patients is approximately 40–
60% [3]. Therefore, accurately predicting overall survival in
BRCA patients is crucial if we are to determine appropriate
treatment strategies and manage patient care in an effective
manner [4]. Several methods have been developed to predict
the overall survival of BRCA patients; however, these ap-
proaches are associated with numerous limitations [5]. These
include challenges related to small sample sizes, heterogeneity
within BRCA subtypes, and variations in treatment regimens.

Additionally, the reliance on clinical parameters alone may
not fully capture the complexities of BRCA progression and
response to therapy. Therefore, there is an urgent need to
develop new prognostic tools with greater levels of accuracy.

The prognosis of BRCA patients is highly dependent on the
stage at which the cancer is diagnosed [6]. Early detection and
timely intervention can significantly improve the chances of
successful treatment and long-term survival [7–10]. However,
accurately predicting the overall survival of BRCA patients
remains a significant challenge due to the complex biological
mechanisms underlying this disease [11]. Several factors,
including genetic variations, lifestyle choices and environmen-
tal variables, all play a significant role in the growth and
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progression of BRCA [12, 13]. Therefore, it is essential that
we develop accurate prognostic tools that can optimize clinical
decision-making and improve patient outcomes.
Over recent years, researchers have focused on identifying

novel biomarkers and pathways that could assist in predicting
the overall survival of patients with BRCA [14, 15]. Cupropto-
sis, a recently discovered mechanism of cell death, is known to
be associated with the onset and spread of cancer [16]. Recent
studies [17, 18] identified an association between cuproptosis-
related genes (CRGs) and a multitude of biological events, in-
cluding oxidative stress, inflammatory processes and genomic
instability. In a variety of cancers, particularly lung cancer
[19], glioblastoma [20] and colon cancer [21], CRGs have
been identified as potential biomarkers for predicting overall
survival. Because of this, we can hypothesize that a CRG-
based approach could provide a more accurate and trustworthy
tool for calculating the overall survival of patients with BRCA.
Although various techniques have been developed to predict

the overall survival of patients with BRCA, these strategies
have limitations. These techniques include traditional clinical
models that utilize patient demographics, tumor characteristics
and treatment history [22]. However, these models often fail
to consider molecular and genetic factors, thus limiting their
accuracy and personalized predictions. In addition, genomic-
based approaches that analyze gene expression profiles and
somatic mutations have shown promise but may not fully
capture the full complexity of BRCA heterogeneity [23, 24];
furthermore, clinical parameters may not accurately reflect
the complex biology of the disease itself [25]. Therefore,
machine learning algorithms, particularly the random survival
forest (RSF) algorithm, have gained significant recognition
as an alternative method for predicting the overall survival
of cancer patients [26–28]. As compared to survival support
vector machine (SVM) and other machine learning algorithms,
the superiority of RSF lies in its ability to handle censored
survival data in an effect manner, a common challenge in
survival analysis, by incorporating censored status during tree
construction [29]. In addition, RSF collates decision trees to
capture complex non-linear relationships between predictors
and survival times more efficiently than SVM [29, 30]. This
advantage is substantiated by studies demonstrating the im-
proved predictive performance of RSF [31]. Moreover, RSF
provides variable importance measures, thus facilitating the
identification of key prognostic factors [32]. The robustness
of the model against overfitting, and its simplicity in terms
of implementation, renders it highly accessible to researchers
and practitioners with varying levels of expertise [33]. The
purpose of this study was to create and assess an RSF model
that utilizes CRGs for predicting the overall survival of patients
with BRCA.
Our specific goals were as follows: (1) utilize informa-

tion from The Cancer Genome Atlas (TCGA) to construct
and assess the efficacy of an RSF model that utilizes CRGs
to forecast the overall survival of individuals with BRCA;
(2) investigate the correlation between RSF scores and other
characteristics, such as clinical traits, functional enrichment,
immune cell proportions and drug sensitivity, and (3) provide
insights into the biological mechanisms underlying BRCA.
Achieving these objectives will provide valuable information

for personalized treatment strategies and the development of
new therapeutic targets for BRCA patients. In addition, our
findings will contribute to the growing body of knowledge
related to cuproptosis and its potential role in cancer prognosis;
this information could also have implications for other types of
cancer.

2. Methods

2.1 Identifying and selecting CRGs
Some CRGs were identified by analyzing previous studies
[16, 34]. Based on our literature search, we selected the
following as CRGs for analysis: FDX1, LIAS, LIPT1, DLD,
DLAT, PDHA1, PDHB, MTF1, GLS and CDKN2A.

2.2 In vitro expression analysis of CRGs
2.2.1 Cell lines
One BRCA cell line (BT 20) and one normal mammary gland
cell line (HMEC) were purchased from the American Type
Culture Collection (ATCC, USA) and cultured in accordance
with the manufacturer’s instructions.

2.2.2 Total RNA extraction
Total RNA was extracted from both the BRCA and normal
cell lines by isopycnic centrifugation, as described previously
[35]. The extracted RNA was then incubated with RNase-
free DNase I (Roche, Germany) at 37 ◦C for 15 minutes.
The quality of the extracted total RNA was then assessed by
considering the 260/280 ratio via 2100 Bioanalyzer (Agilent
Technologies, Germany).

2.2.3 RNA-seq analysis
RNA samples were sent to Macrogen, Seoul, South Korea, for
RNA-seq analysis. FollowingRNA-seq analysis, we identified
the normalized gene expression values of the CRGs in reads per
kilo base million reads (RPKM) and fragments per kilo base
million reads (FPKM). The obtained FPKM values against
CRGs in BRCA cells and the normal control cell line were then
compared to identify differences in expression level.

2.3 Analysis of genetic alterations
cBioPortal (https://www.cbioportal.org/) is a widely used on-
line platform for the analysis of genetic alterations in cancer
research [36]; this software allows researchers to investigate
and visualize genomic data from various cancer studies, thus
providing valuable insights into the genetic landscape of dif-
ferent tumor types. cBioPortal also offers user-friendly tools
for analyzing and interpreting genetic alterations, facilitating
the discovery of potential therapeutic targets and biomarkers
for precision medicine approaches. In the present research, we
performed mutational analysis of CRGs in BRCA samples.

2.4 Data sources and preprocessing for RSF
construction
First, we searched the TCGA database (https://www.
cancer.gov/ccg/research/genome-sequencing/tcga)
and retrieved a TCGA-BRCA dataset [37]. This dataset
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contained RNA-seq information as well as statistics relating
to the overall survival of patients with BRCA. Samples
with incomplete information relating to overall survival or
low levels of CRG expression were excluded. Our analysis
included a total of 1057 BRCA patients (Table 1).

2.5 Construction of the RSF model

The RSF model is a powerful machine-learning algorithm that
is used to predict survival. In this study, the RSFmodel was de-
veloped using the “randomForestSRC” package in R software
(https://www.r-project.org/). The randomForestSRC package
generates decision curves by evaluating the net benefit of using
the RSF model across a range of probability thresholds. The
tool plots the proportion of true positives against the proportion
of false positives at various threshold levels. Moreover, the
randomForestSRC package calculates RSF scores by aggre-
gating predictions from multiple decision trees. To develop
our new RSF model, we used the CRGs as predictor variables,
and used overall survival time and censoring status as response
variables. During analysis, the number of trees was set at
500; this allowed the accurate calculation of RSF scores. The
optimal tuning parameters for the RSF model were selected
using the “tune.randomForestSRC” function in the “random-
ForestSRC” package. The tune.randomForestSRC function
employs cross-validation and grid search techniques to identify
the best combination of hyperparameters by considering data
and a range of hyperparameter values. The function then
performs cross-validation by splitting the data into subsets
(folds), and for each combination of hyperparameters, the
package trains the RSF model using a subset of data and
tests it on the remaining data. The performance of the model
was evaluated using a selected evaluation metric (e.g., the

concordance index or the log-likelihood); the hyperparameters
that yield the best performance were then selected. Thus,
the tune.randomForestSRC package plays a crucial role in
pinpointing the optimal hyperparameters for the RSF model,
thereby enhancing the accuracy and precision of the survival
prediction model. Ultimately, the discriminatory power of
the RSF model was evaluated using time-dependent receiver
operating characteristic curve (ROC) curves. The decision
curves were used to compare the overall advantage of various
prediction criteria in order to assess the clinical applicability
of the RSF model.

2.6 Clinical characteristics, functional
enrichment, immune cell proportions, and
drug sensitivity analysis
The Wilcoxon rank-sum test and Kruskal-Wallis test were
used to analyze the relationship between RSF scores with
additional clinical variables. The “clusterProfiler” module
in the R package was used to carry out gene set enrichment
analysis (GSEA) [38]. The GSEA analysis often includes the
prediction or identification of Gene Ontology (GO) terms and
Kyoto Encyclopedia of Genes and Genomes (KEGG).
In addition, the “CIBERSORT” tool in the R package was

used to calculate immune cell proportions, and Spearman’s
correlation coefficient was used to investigate the relationship
between RSF scores and immune cell proportions [39]. The
Genomics of Drug Sensitivity in Cancer 2 (GDSC2) dataset,
which provides data relating to the drug sensitivity of cell
lines with cancer, along with pRRophetic software, were used
to analyze drug sensitivity [40, 41]. Spearman’s correlation
coefficient was used to analyze the relationship between RSF
grades and sensitivity to drugs.

TABLE 1. Clinical data of the samples included in the TCGA-BRCA dataset.
Sr. No Clinicopathological feature No. Samples Number of excluded samples

with missing information
Number of total
included samples

Age distribution
Above 50 562

0 1057
Below 50 495

Radiotherapy
Yes 47

1057
No 1000 10

1

BRCA stage distribution

Stage 1 183

1057
Stage 2 595
Stage 3 247
Stage 4 20 12

Tumor stage distribution

T1 400

1057
T2 365
T3 200
T4 54 30

6

Nodal metastasis distribution

N0 300

1057
N1 200
N2 200
N3 200 157

https://www.r-project.org/
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2.7 Statistical analysis
R softwarewas used to perform all statistical analyses. All tests
were two-sided; p < 0.05 was considered to be statistically
significant. The Benjamini-Hochberg approach was used to
compensate for multiple testing in order to reduce the rate of
false discovery.

3. Results

3.1 In vitro expression analysis of CRGs
expression
In this study, we conducted RNA-seq analysis of two cell
lines; the first cell line was a BRCA cell line (BT 20 cells);
the other was a normal control cell line (HMEC cells). Our
objective was to validate the expression levels of CRGs in
these two cell lines. For this validation, we utilized FPKM,
a widely used expression quantitative value that is commonly
used in gene expression analysis. As shown in Fig. 1, RNA-seq
results revealed that CRGs were expressed in both the normal
(HMEC) and BRCA (BT 20) cell lines. Notably, the FPKM
values of CRGs were significantly (p-value < 0.05) higher in
the BRCA cell line (BT 20) when compared to the normal cell
line (HMEC).

3.2 Genetic alteration in CRGs
Next, we analyzed the genetic alterations of CRGs across the
TCGA-BRCA dataset using cBioPortal, including amplifica-
tion, deletion, mutation and gene fusion. Analysis revealed
that all CRGs (FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1,
PDHB, MTF1, GLS and CDKN2A) exhibited genetic alter-
ations in a relatively small proportion of the analyzed BRCA
samples. Specifically, these alterations were observed in 0.3%,
1.1%, 0.4%, 1.2%, 0.2%, 0.9%, 0.3%, 1.1%, 0.9% and 5%
proportions of the BRCA samples, respectively (Fig. 2). These
findings highlight the diversity of genetic alterations in CRGs
within the TCGA-BRCA dataset and provide insights into
their potential relevance with regards to the development and
progression of BRCA.

3.3 Development and performance of the
RSF model
In terms of forecasting the overall survival of patients with
BRCA, we found that the RSF model based on CRGs per-
formed well. Individuals with high RSF scores had a sub-
stantially lower overall survival than individuals with low RSF
values, as illustrated in Fig. 3A (log-rank test, p < 0.0001;
Kaplan-Meier curve). Furthermore, when compared to in-
dividuals with low RSF values, individuals with high RSF
values had significant (p-value = 0.05) worse rates of disease-
specific survival, progress-free survival and relapse-free sur-
vival (Supplementary material). The overall survival cali-
bration curves for 1, 3 and 5 years showed good agreement
with the expected and actual survival probabilities (Fig. 3B).
In addition, at 1, 3 & 5 years, the areas under the ROC
curves (AUC) for predicting overall survival were 0.978, 0.985
and 0.991, respectively (Fig. 3C). Finally, the decision curves
indicated that the RSF model had higher net benefits than both

the treat-all-patients strategy and the treat-none strategy across
a wide range of threshold probabilities for 1-, 3- and 5-year
overall survival prediction (Fig. 3D–F). Our findings suggest
that the RSFmodel could be used as a prognostic tool to stratify
patients based on their overall survival and guide personalized
treatment strategies accordingly.

3.4 Relationships between RSF scores and
clinical features
Next, we investigated the association between RSF scores and
various clinical traits in individuals with BRCA. As depicted
in Fig. 4, we observed notable age-related differences in the
RSF scores of BRCA patients, with those over 50 years-of-age
exhibiting lower RSF scores when compared to those under 50
years-of-age (Fig. 4A). Furthermore, RSF scores were higher
in patients who underwent radiation therapy when compared
to those who did not (Fig. 4B).
In addition, we investigated the RSF scores with respect to

the cancer stage, T stage and N stage. Notably, individuals
with advanced cancer stages, higher T stages or positive N
stages, exhibited significantly lower RSF scores when com-
pared to those with early stages of cancer, lower T stages or
negative N stages (Fig. 4C–E). These findings suggest that
the RSF model has the potential to stratify patients based on
their prognosis when utilizing these clinical characteristics as
important predictive factors. The utilization of RSF scores in
combination with these clinical traits could facilitate individ-
ualized patient management and treatment decision-making in
the context of BRCA.

3.5 Functional enrichment analysis
Next, we employed GSEA to investigate the enrichment of
signature gene sets, GO gene sets, and KEGG gene sets in
BRCA samples with high RSF scores. Our aim was to gain
a deeper understanding of the molecular processes underlying
the RSF model and its association with CRGs.
As illustrated in Fig. 5, the CRGs were associated with

various GO terms in BRCA, including cytoplasmic translation,
the unwinding of DNA in DNA replication, and the attachment
of spindlemicrotubules to the kinetochore. Furthermore, Fig. 6
shows that CRGs were associated with several KEGG path-
ways in BRCA, including ribosomes, DNA replication, RNA
polymerase and cell cycle pathways.
These findings shed light on the biological mechanisms

implicated in BRCA and provide potential therapeutic targets
for personalized treatment strategies. By uncovering the en-
riched gene sets and pathways in BRCA patients with high
RSF scores, we gained valuable insights that may aid in the
development of targeted therapies and approaches for precision
medicine.

3.6 Relationships between CRGs, immune
cell proportions and drug sensitivity
Next, we investigated the association between CRGs and
immune cell proportions using the CIBERSORT algorithm.
Fig. 7 shows that CRGs exhibited a positive correlation with
the percentages of naive B cells, resting memory CD4 T



50

FIGURE 1. Expression analysis of CRGs using BT 20 and HMEC cell lines via RNA-seq analysis. CRGs: Cuproptosis-
Related Genes; RNA-seq: RNA sequencing.

FIGURE 2. The analysis of genetic alterations of CRGs in BRCA samples via cBioPortal software.

cells, activated dendritic cells, and follicular helper T cells.
Conversely, we identified negative correlations with the
percentages of M2 macrophages, neutrophils and naive CD4
T cells.

These findings suggest that the RSF model may have the
potential to predict the immunological state of BRCA individ-
uals based on the interplay between CRGs and immune cell
proportions. By identifying the associations between CRGs
and specific immune cell types, the RSF model can offer
valuable information that could be utilized to tailor treatment
plans for individual patients with BRCA.

In the final phase of our study, we investigated the relation-
ship between RSF scores and drug sensitivity using the IC50

values obtained from the GDSC2 database. Fig. 8 shows that
higher RSF scores were associated with increased resistance
to VX-11e_2096 and ERK_6604_1714, indicating reduced
sensitivity to these drugs. Conversely, higher RSF scores were

associated with greater sensitivity to Acetalax_1804, WEHI-
539_1997 and AZD5991_1720, thus suggesting an enhanced
responsiveness to these medications.
These results imply that the RSF model holds promise as

a predictive tool for drug sensitivity in patients with BRCA.
By assessing the correlation between RSF scores and drug
responses, the RSF model can potentially inform personalized
treatment plans tailored to the unique drug sensitivities of
individual patients with BRCA.

4. Discussion

BRCA is the most common cancer in women and accounts for
the majority of deaths due to cancer in the female population
[42, 43]. In this study, we analyzed the expression levels
of CRGs and created an RSF model based on these genes
to predict the overall survival of patients with BRCA. The



51

FIGURE 3. The creation of a random survival forest (RSF) model determined by CRGs to forecast overall survival in
patients with BRCA. (A) Kaplan-Meier curve plotted showing the overall survival of distinct groups of BRCA patients based on
the optimal threshold of their RSF score. (B) Calibration curves for the prognosis model predicting the overall survival of BRCA
patients over a period of 1, 3 & 5 years. (C) Time-dependent ROC curves for RSF scores in patients with BRCA. (D) Decision
curves for 1-year overall survival prediction in BRCA patients. (E) Decision curves for 3-year overall survival prediction in
BRCA patients. (F) Decision curves for 5-year overall survival prediction in BRCA patients. CRGs: Cuproptosis-Related Genes;
BRCA: Breast cancer; CRGs: cuproptosis-related genes; AUC: area under the curve; TCGA_BRCA: The Cancer Genome Atlas
Breast Cancer Susceptibility Genes.
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FIGURE 4. RSF scores of CRGs in BRCA patients based on different clinical characteristics. (A) RSF scores of CRGs
in BRCA patients at different ages. (B) RSF scores of CRGs in BRCA patients receiving radiotherapy or not. (C) RSF scores of
CRGs in BRCA patients with different stages. (D) RSF scores of CRGs in BRCA patients with different T stages. (E) RSF scores
of CRGs in BRCA patients with different N stages. CRGs: Cuproptosis-Related Genes; BRCA: Breast cancer; TCGA_BRCA:
The Cancer Genome Atlas Breast Cancer Susceptibility Genes.

FIGURE 5. GSEA software was used to examine the GO terms of CGRs in BRCA samples with high RSF scores. GSEA:
Gene Set Enrichment Analysis; GO: Gene Ontology; CRGs: Cuproptosis-Related Genes; BRCA: Breast cancer; RSF: Random
Survival Forest.
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FIGURE 6. The analysis of CGRs with high RSF scores in relation to KEGG terms in patients with BRCA. KEGG:
Kyoto Encyclopedia of Genes and Genomes; CRGs: Cuproptosis-Related Genes; BRCA: Breast cancer; RSF: Random Survival
Forest; GSEA: Gene Set Enrichment Analysis.

FIGURE 7. The correlation of CRGs with immune cell proportions, as characterized by the CIBERSORT algorithm.
(A) naïve B cells, (B) activated dendritic cells, (C) M2 macrophages, (D) neutrophils, (E) resting memory CD4 T cells, (F) naive
CD4 T cells, and (G) follicular helper T cells. CRGs: Cuproptosis-Related Genes; TCGA_BRCA: The Cancer Genome Atlas
Breast Cancer Susceptibility Genes.
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FIGURE 8. The correlation of CRGs with the IC50 of various drugs from the GDSC2 database. (A) VX-11e_2096,
(B) ERK_6604_1714, (C), Acetalax_1804, (D) WEHI-539_1997, and (E) AZD5991_1720. CRGs: Cuproptosis-Related Genes;
GDSC2: Kyoto Encyclopedia of Genes and Genomes; CRGs: cuproptosis-related genes; TCGA_BRCA: The Cancer Genome
Atlas Breast Cancer Susceptibility Genes.

CRGs were significantly (p-value < 0.05) up-regulated in the
BRCA cell line when compared to the normal control cell
line. Moreover, the newly developed RSF model for BRCA
patients performed well in terms of predicting overall survival
and identified differences based on age, radiotherapy status,
stage, T stage and N stage. We also found that the RSF scores
were associatedwith various clinical characteristics, functional
enrichment, immune cell proportions and drug sensitivity.

Similar studies have been conducted in the past that focused
on identifying biomarkers or patient prognostic prediction us-
ing gene signatures, including BRCA patients. For instance,
Wu et al. [44] used lncRNA signature profiling to create a
molecular predictor of survival for patients with colon cancer.
In patients with glioma, a separate investigation found that
an endoplasmic reticulum stress-related signature was able to
predict both immunological characteristics and prognosis [45].
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Based on gene expression data from both experiments, these
researchers were able to create models that could precisely
predict patient outcomes.
Multiple research investigations have employed gene

expression profiling to forecast outcomes for patients with
BRCA. For instance, Kalafi et al. [46] utilized clinical
data with deep learning and machine learning methods for
predicting the survival of patients with BRCA. Similarly,
Montazeri et al. [47] used naive bayes, random forest
trees, the one-nearest neighbour method, adaboost, support
vector machines, Radial basis function (RBF) networks,
and multilayer perceptrons to predict the survival of BRCA
patients. In another study, Pan et al. [48] proposed a
predictive model for patients with colorectal cancer using
mRNAgene expression data. Thismodel utilized differentially
expressed genes (DEGs) profiles obtained from univariate
and multivariate Cox regression analyses and compared
later Tumor, Node, Metastasis (TNM) stages to investigate
their predictive survival accuracy. Analysis revealed that
10 differentially expressed genes (DEGs) exerted significant
impact on the survival of patients with colorectal cancer.
Similarly, Yan et al. [49] employed random forests to
identify biomarkers associated with the survival of patients
with colorectal cancer based on a set of oligonucleotide
microarray data. These findings highlighted four genes with
the potential to predict the survival of patients with colorectal
cancer. A recent study conducted by Mustafa et al. [50]
introduced a novel prognostic model for BRCA patients,
termed the ensemble model for BRCA survivability prediction
(EBCSP). By deploying independent neural networks, the
EBCSP model demonstrated superior performance when
compared to existing benchmarks such as the multimodal
DNN by integrating multi-dimensional data (MDNNMD)
model. Another study, by Othman et al. [51], introduced
a hybrid deep learning model, combining Convolutional
neural network-long short-term memory (CNN-LSTM) and
Convolutional neural network-gated recurrent unit (CNN-
GRU) architectures, to predict the survival of patients with
BRCA. The hybrid Deep Learning (DL) model produced
promising results, highlighting its potential for improved
survival prediction in patients with BRCA. The current
investigation, in contrast to earlier studies, focused on CRGs
and their relationship to overall survival in patients with
BRCA. The regulation of CRGs has been shown to modulate
tumor progression, as these genes have the potential to induce
death in cancer cells by disrupting copper homeostasis [52].
Many research investigations have demonstrated the pre-

dictive importance of tumor-infiltrating lymphocytes (TILs)
in patients with BRCA in terms of immune cell proportions.
For instance, individuals with human epidermal growth factor
receptor 2 (HER2)-positive BRCA, who have greater levels
of TILs, were shown to have better survival rates [53]. In
addition, the presence of specific subtypes of TILs, such as
CD8+ T cells, is known to be a favorable prognostic factor in
patients with triple-negative BRCA [53].
In contrast to existing predictivemodels that were built using

demographic data and routine clinical examination indicators,
our newly developed model utilizes molecular biomarkers ex-
tracted from gene expression analysis. This approach enables

high-accuracy predictions without the need for additional ex-
periments. Moreover, our model holds the promise of aiding
clinicians to identify and treat high-risk patients in the early
stages of disease. By providing more accurate, targeted, and
individualized treatment plans, physicians could enhance the
prognosis of patients with BRCA, ultimately improving patient
outcomes.
Our study does, nevertheless, have certain limitations that

need to be considered. In order to establish the validity of
our findings, further validation in separate cohorts is required
because all the data utilized in the present research was sourced
from public sources. Furthermore, although we identified
several biological pathways and processes associatedwith RSF
scores, further research is needed to validate these relationships
and fully clarify the basic processes involved. Finally, al-
though our RSFmodel showed good performance in predicting
overall survival, it may not apply to other types of cancer
or populations; therefore, further research is required to fully
determine its potential therapeutic value.
The findings of this study were used to construct and assess

an RSF model to estimate the overall survival of patients with
BRCA. The RSF model demonstrated good performance in
predicting overall survival, and further analysis revealed that
RSF scores were associated with various clinical character-
istics, functional enrichment, immune cell proportions, and
drug sensitivity. These findings have significant ramifications
for individualized treatment plans and further research on the
biological mechanisms underlying BRCA.

5. Conclusions

Our new RSF model based on CRGs is an effective tool for
predicting overall survival in patients with BRCA. RSF scores
were associated with various clinical characteristics, immune
cell proportions and drug sensitivity. The results of this study
have significant importance for both future research on the
molecular mechanisms driving BRCA and personalized plans
for therapy.
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