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Abstract
Background: N6-methyladenosine (m6A) modifications are known to play a key role
in the development and progression of cancer. Vasculogenic mimicry (VM) is a unique
mechanism that can contribute to tumor recurrence and metastasis. However, the
specific association between m6A regulators (MAGs) and VM-related genes (VRGs)
in cervical cancer (CC) have yet to be elucidated. Methods: Risk signatures were
constructed by Univariate Cox regression analysis and least absolute shrinkage and
selection operator (LASSO) analysis. The predictive performance of the model was
evaluated byKaplan-Meier survival analysis and receiver operating characteristic (ROC)
curves. Patients were divided into high- and low-risk groups based on the median
risk score, and differences in key parameters between the two groups were assessed
in terms of tumor immune landscape and somatic mutations. Results: Based on
univariate Cox regression analysis and LASSO regression analyses, we constructed an
eight-gene prognostic signature (termed as the mVMscore). High- and low-mVMscore
groups, based on median risk scores, were associated with different clinical outcomes
and biological characteristics. Survival analysis further demonstrated that patients in
the low-mVMscore group had a better survival rate than those in the high-mVMscore
group. CIBERSORT and single-sample gene set enrichment analysis (ssGSEA) showed
that immune cells were significantly enriched in the high-mVMscore group. Immune
scores, estimate scores and stromal scores were lower than those of the low-risk group.
Conclusions: We constructed a novel prognostic eight-gene signature (mVMscore)
based on MAGs and VRGs which exhibited significant potential to predict the need
for immunotherapy in patients with cervical cancer (CC). Collectively, our findings
provide a new direction for assessing the prognosis of patients with CC and designing
immunotherapy strategies.
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1. Introduction

Cervical cancer (CC) is one of the leading causes of can-
cer deaths in women worldwide, ranking fourth in terms of
incidence and mortality [1]. Generally, most patients can
be treated effectively with standardized therapies, including
radiotherapy, chemotherapy and/or surgical resection. How-
ever, recurrence and metastasis are still major challenges for
patients with locally advanced CC [2, 3]. Therefore, there is an
urgent need to identify more reliable diagnostic and prognostic
biomarkers for CC.
N6-methyladenosine (m6A) RNA modification is a

dynamically reversible form of epigenetic modification that
is widespread in eukaryotic cells and is mainly composed
of “writers” (e.g., Methyltransferase-like (METTL) 3/14/16,

RNA-binding motif protein 15/15B (RBM15/15B), Vir-like
m6A methyltransferase-associated protein (VIRMA, also
known as KIAA1429), Zinc finger CCCH-type containing 13
(ZC3H13) and Wilms tumor 1-associated protein (WTAP)),
“readers” (YTH Domain Family (YTHDF) 1–3 and YTH
Domain-Containing (YTHDC) 1–2 and the Heterogeneous
nuclear ribonucleoprotein (HNRNP) C/A2B1 or Insulin-like
growth factor 2 mRNA-binding proteins (IGF2BP)) and
“erasers” (Fat mass and obesity-associated protein (FTO) and
AlkB homologue 5 (ALKBH5)). These factors are involved in a
range of metabolic processes, including RNA splicing, nuclear
export and translation [4–7], and can promote the stability
of target gene mRNAs to influence gene regulation and the
biological functionality of cancer cells [8]. Previous studies
confirmed that the aberrant expression of m6A regulators

https://www.ejgo.net
http://doi.org/10.22514/ejgo.2025.063
https://www.ejgo.net/


34

not only increases the malignant phenotype of tumor cells
[9] but also participates in the regulation of tumor immune
surveillance [10]. Therefore, the in-depth investigation of
m6A methylation modification is expected to provide new
concepts for targeted therapy in CC.
Vasculogenic mimicry (VM) is an independent blood perfu-

sion pattern that is independent of the endothelial vasculature
and capable of providing a sufficient amount of nutrients for
the growth of tumors [11, 12]. Furthermore, VM is a factor
that could potentially limit the efficacy of antivascular therapy
in some forms of cancer [13–15]. During VM, cancer cells
arrange themselves into a tube-like structure that can directly
infiltrate into the bloodstream and facilitate the dissemination
of cancer cells by invading the extracellular matrix. An in-
creasing number of studies have shown that the formation of
VM is closely associated with tumorigenesis, drug resistance
andmetastasis, including colorectal cancer [16], hepatocellular
carcinoma [17], breast cancer [18], glioma [19] and other
malignant tumors. Therefore, VM has been recognized as a
potential independent indicator of a poor prognosis in patients
with cancer [20, 21].
The association between m6A regulators and VM was

recently reported in the literature. In this earlier study, the
authors found that METTL3 inhibited Ephrin receptor A2
(EphA2) and Vascular endothelial growth factor A (VEGFA)
mRNA degradation in a different IGF2BP-dependent manner
and induced VM formation in colorectal cancer by activating
the Phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian
target of rapamycin (mTOR) and Extracellular signal-related
kinases 1/2 (ERK1/2) signaling pathways [22]. Furthermore,
METTL3 is known to enhance the stability of HOXA transcript
antisense RNA myeloid-specific 1 (HOTAIRM1) mRNA and
promote VM formation and malignant progression in gliomas
[23]. However, it has not been reported whether m6A
modification affects the formation of VM formation to
promote the progression of CC. Furthermore, whether m6A
modification and VM formation are both involved in the
regulation of the tumor microenvironment in CC has yet to be
established.
In this study, we revealed the complex association between

m6A regulators and VM-related genes. We constructed a risk
model based on m6A regulators and VM-related genes and
comprehensively analyzed the correlation between the risk
model and patients with CC in terms of biological function,
immune checkpoint genes, the tumor microenvironment and
genomic changes, thus providing new insights for assessing
the prognosis and immunotherapy of CC.

2. Materials and methods

2.1 Data acquisition
RNA sequencing data (tragments per kilobase of transcript
per million fragments mapped (FPKM) values) were
downloaded from The Cancer Genome Atlas (TCGA,
https://portal.gdc.cancer.gov/) database, which included 306
tumor samples and three normal samples. The FPKM values
were first converted to transcripts per kilobase million (TPM)
values. Next, we downloaded the corresponding clinical

information while excluding samples with a survival time of
0. Finally, 294 patients were included in our analysis. We also
downloaded copy number variation data and acquired somatic
mutation data from UCSC Xena (https://xenabrowser.net).

2.2 Detection of mVM genes
Twenty-eight MAGs and 25 VRGs were collated from previ-
ous literature, thus yielding a total of 53 mVM genes [24–
27]. Pearson correlation analysis was then used to assess the
correlation betweenMAGs and VRGs. Gene interactions were
analyzed by the online STRING tool (https://cn.string-db.org/)
and Cytoscape software version 3.9.0 was used to visualize the
correlation results.

2.3 Unsupervised clustering analysis
When investigating the specific role of mVM genes in CC, we
determined the optimal number of clusters to cluster patients
into different subgroups using the “ConsensusClusterPlus”
tool in the R package [28].

2.4 Construction of the mVM prognostic
signature
CC patients were randomized into training and validation sets
by the “caret” package and used univariate Cox analysis to
screen the prognosis-related genes. Subsequent LASSO re-
gression led to the identification of eight key genes thus al-
lowing us to establish a mVM-related prognosis signature.
Patients were divided into high- and low-risk groups based on
the median risk score (referred to as the mVMscore), and the
difference in prognosis between the two groups was assessed
using Kaplan-Meier analysis. In addition, time-dependent
curves were plotted to evaluate the accuracy of the signature
at different periods. The mVMscore, age, grade and TNM
(tumor, node, metastasis) staging metrics were incorporated
into ROC curves to further evaluare the prognostic predictive
ability between mVMscores and clinical factors.

2.5 Functional enrichment analysis and
gene set variation analysis (GSVA)
The “clusterProfiler” package was used for Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis
to identify functional and pathway enrichment [29]. The
“c2.cp.kegg.v7.5.symbols” gene set was downloaded from the
Molecular Signatures Database (MSigDB), and differences
in biological processes under different mVM modification
patterns were determined by GSVA [30].

2.6 Tumor microenvironment and immune
infiltration analysis
To quantify tumor-infiltrating immune cells, we used the
CIBERSORT algorithm [31] to determine the proportion
of infiltrating immune cell types. Single sample gene set
enrichment analysis (ssGSEA) was then used to evaluate the
abundance of infiltrating immune cells. The “ESTIMATE”
tool in the R package was then used to calculate immune
scores, stomal scores, estimate scores and tumor purity in
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patients with CC [32]. Tumor immune dysfunction and
rejection (TIDE) scores were then downloaded from the TIDE
database (http://tide.dfci.harvard.edu/) and used to evaluate
the likelihood of a response to immunotherapy.

2.7 Statistical analysis
All statistical tests were performed in R software version 4.3.1.
Pearson’s correlation analysis was used to investigate the as-
sociation between MAGs and VRGs. Kaplan-Meier survival
analysis, with the log-rank test, was then used to compare
patients in different subgroups. Statistical significance was set
at p < 0.05.

3. Results

3.1 Multi-omics characterization of the
landscape of m6A regulators in CC
To reveal the regulatory role of m6A modifications in CC,
we first explored the genetic changes of 28 m6A regulators.
Our analysis showed that the overall mutation frequency of
m6A regulators was low, with somatic mutations occurring
in 50 of the 289 samples (17.3%); the highest frequencies of
mutation (3%)were detected inLeucine-rich pentatricopeptide
repeat containing protein (LRPPRC), ZC3H13 and YTHDC2
(Fig. 1A). Fig. 1B depicts the majority of m6A regulator
copy number deletions, with onlyFragile Xmental-retardation
protein (FMR1), RBMX, HNRNPC, METTL3, YTHDC1 and
VIRMA exhibiting amplification. Fig. 1C shows the location
of copy number variations for m6A regulators on different
chromosomes. In addition, to evaluate the interaction between
genetic variations and the expression of m6A regulators, we
further analyzed differences in the expression levels of m6A
regulators between tumor and normal samples. We found
that METTL16, FTO, RBM15, YTHDF2 and HNRNPA2B1
exhibited differential expression when compared with normal
tissues; specifically, METTL16 and FTO exhibited reduced
expression levels in tumor tissues, whileRBM15, YTHDF2 and
HNRNPA2B1 exhibited elevated expression levels (Fig. 1D).
Pearson correlation analysis confirmed the close correlation
between m6A regulators (Fig. 1E). Fig. 1F demonstrates the
prognostic value of the three RNA modification species in
patients with CC, thus forming a complex regulatory network.
Collectively, these results revealed that m6A regulators may
play an important role in the progression of CC.

3.2 Association between m6A modifications
and VM
A large body of evidence suggests that m6A modifications are
involved in regulating the progression of a variety of cancers,
and that VM is closely associated with tumor invasion and mi-
gration. To investigate whether there is a correlation between
m6A modifications and VM, we confirmed the association
withinVRGs by Pearson’s correlation analysis; this analysis in-
dicated that Rho kinase type 1 (ROCK1) exhibited the strongest
correlation withMitogen-activated protein kinase 1 (MAPK1),
with a correlation coefficient of 0.84 (Fig. 2A). In addition, we
generated a heatmap which illustrated significant correlations

between m6A modifiers and VRGs (Fig. 2B). We also gener-
ated a protein-protein interaction (PPI) network which further
confirmed the intricate interactions between m6A regulators
and VRGs (Fig. 2C).

3.3 Identification of mVMmolecular
patterns and biological function analysis
First, we performed univariate Cox regression analysis on
the 53 mVM genes (Supplementary Fig. 1) and selected
significant genes (p < 0.05) for unsupervised consensus clus-
tering. We found that k = 3 was the most appropriate choice
when cluster stability increased from k = 2 to 9 (Fig. 3A–C);
this led to the classification of patients into three subgroups:
cluster C1, cluster C2 and cluster C3. When considering
the three subgroups, survival analysis showed that cluster C1
had a significantly shorter survival and the worst prognosis
(Fig. 3D).
Next, we used GSVA to further compare biological be-

haviors between the three subgroups. cluster C1 was pre-
dominantly enriched in focal adhesion, glycosaminoglycan
degradation, glycosaminoglycan biosynthesis, chondroitin sul-
fate, galactose metabolism and the nod-like receptor signal-
ing pathway. cluster C2 was significantly enriched in the
linoleic acid metabolism pathway while cluster C3 was as-
sociated with metabolic or biosynthetic activation phenotypes
(Supplementary Fig. 2A–C). Analysis of immune cell infil-
tration further showed that cluster C1 was mainly enriched in
innate immune cells, such as γδ T cells, mast cells, neutrophils,
regulatory T cells and Type 2 T helper cells. Activated B cells
accounted for the largest proportion of cells in cluster C2, while
cluster C3 featured the highest number of immature dendritic
cells (Fig. 3E).

3.4 Construction and validation of
prognostic signature
With the purpose of better predicting the clinical progno-
sis based on mVM genes, patients with CC in the TCGA
database were randomly divided into a training set and a
validation set for model construction and validation. First,
we performed univariate Cox regression analysis on 53 mVM
genes (Supplementary Fig. 1) and identified 14 prognosis-
related genes (p < 0.05). To improve the predictive effect,
we used the LASSO-Cox regression algorithm for further
screening; this strategy ultimately identified eight prognostic
genes (Fig. 4A,B). Kaplan-Meier analysis demonstrated that
high expression levels of all eight genes identified by LASSO
analysis were significantly associated with a poor patient prog-
nosis (Supplementary Fig. 3). In addition, we constructed
a prognostic signature by calculating the risk score for each
patient, which we defined as the mVMscore. Patients with CC
were then categorized into low-risk and high-risk groups based
on the median mVMscore. Fig. 4C–E shows the mVMscore,
survival time, live status and a heatmap of mVM genes expres-
sion in CC. Kaplan-Meier survival curves further showed that
the high mVMscore group had a worse prognosis than the low
mVMscore group, both in the training group (Supplementary
Fig. 4A), the validation group (Supplementary Fig. 4B), and
in the entire cohort (Fig. 5A).

http://tide.dfci.harvard.edu/
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FIGURE 1. Multi-omics characterization landscape of m6A regulators in cervical cancer. (A) The mutation landscape
of 28 m6A regulators. (B) Copy number variation alteration frequency of m6A regulators. (C) The location of CNV alteration
of m6A regulators on chromosomes. (D) Differential expression of m6A regulators in tumor and normal samples. *p < 0.05,
**p < 0.01. (E) Pearson correlation analysis reveals positive and negative correlations among m6A regulators. (F) Prognostic
network diagram of the three RNA modification species. The left half of circle in different colors represents different RNA
modification types. Lines between m6A regulators represent their positive/negative correlations. The size of the circles represents
the relationship between m6A regulators and survival. The larger the circle the more likely it is to be a prognosis-related gene.
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FIGURE 2. Correlation between m6A regulators and VM. (A) The expression correlation analysis of VRGs in CC. (B)
The correlations between m6A regulators and VRGs. *p < 0.05, **p < 0.01, ***p < 0.001. (C) PPI network revealed complex
relationships betweenMARs and VRGs.

Then, in order to better understand whether the mVMscore
could effectively predict the prognosis of a given patient, we
plotted time-dependent ROC curves based onmVMscore. This
allowed us to determine the change of survival model and
prediction accuracy at different time points by calculating
the areas under the curve (AUCs) at 1 year, 3 years and 5
years. Analysis showed that the 1-year, 3-year and 5-year area
under the curve (AUC) values in the training set were 0.713,
0.735 and 0.706, respectively (Supplementary Fig. 4C). The
AUC values for 1-, 3- and 5-years were all above 0.7 for the
testing cohort (Supplementary Fig. 4D) and entire TCGA
dataset (Fig. 5B). In addition, the 1-, 3- (Supplementary Fig.
4E,F) and 5-year ROC curves (Fig. 5C) for all cervical cancer
patients showed that the prognostic ability of the mVMscore

was significantly better than other clinical traits, such as grade,
age and TNM stage. Therefore, our new prognostic model has
good prognostic value.

3.5 Analysis of the correlation between
mVMscore, clinical traits and somatic
mutations

The Sankey diagrams demonstrated the analysis workflow of
mVMscore, cluster and survival status (Fig. 5D). We observed
that all three subgroups were correlated with patient survival
status, mVMscore was higher in cluster C1; both cluster C2
and cluster C3were correlatedwith a lowmVMscore (Fig. 5E).
We also observed that mVMscore was higher in patients with
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FIGURE 3. Recognition of mVM genes modification patterns. (A) Consensus clustering matrix at k = 3. (B) Cumulative
Distribution Function (CDF) curve for consensus clustering analysis at k = 2–9. (C) Relative change in area under the CDF curve
at k = 2–9. (D) Survival analysis of different clusters by Kaplan-Meier. (E) The abundance of immune-infiltrating cells in the
three clusters. *p < 0.05, **p < 0.01, ***p < 0.001.

death status than in patients with survival status (Fig. 5F).
Subsequently, we investigated the association between Tu-
mour mutation burden (TMB) and mVMscore and found that
patients in the high TMB group had a significantly better
prognosis (Fig. 5G). When the high TMB group was combined
with the low mVMscore group, we found that survival was
significantly better than for the other groups (Fig. 5H).
Next, we compared somatic mutation frequencies between

the high mVMscore and low mVMscore subgroups and found
that overall mutation frequencies did not differ significantly
between these two groups. The most common type of mutation
was nonsense mutations; furthermore, the somatic mutation
rates of TTN (36% vs. 22%) and Phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) (30%
vs. 23%) were significantly higher in the high mVMscore sub-
group (Fig. 6A) than in the lowmVMscore subgroup (Fig. 6B).
In addition, we also demonstrated that the top 20mutated genes
were significantly less frequent in the high mVMscore group
(Fig. 6C), but were more frequent in the low mVMscore group
(Fig. 6D).

3.6 Correlation between mVMscore and the
tumor immune landscape

To enhance our understanding of the tumor microenvironment,
we next assessed the abundance of immune-infiltrating cells in
the tumor microenvironment by performing CIBERSORT and
ssGSEA analyses. These analysis showed that immune cells
were significantly enriched in the high-risk group, including
activated B cells, activated cytotoxic CD8 T cells, eosinophils,
immature B cells, immature dendritic cells, myeloid-derived
suppressor cells (MDSCs), macrophages, regulated immature
B cells, regulatory T (Treg) cells, follicular helper T (Tfh)
cells, type 1 helper T (Th1) cells and natural killer (NK) cells
(Fig. 7A,B). Based on the ESTIMATE algorithm, we then
analyzed the differences between stromal and immune cells
in the high and low-mVMscore groups. Analysis showed
that the immune score, estimated score, and stromal score
were higher in the low-risk group than in the high-risk group
(Fig. 7C). TIDE scores were higher in the low-mVMscore
group (Fig. 7D), thus indicating that immune escape was more
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FIGURE 4. Construction of a prognosis signature base on mVM genes. (A,B) LASSO Cox analysis identified eight
prognosis-related genes. (C–E) Distribution of mVmscore, survival status of CC patients and heatmap expression of characteristic
gene expression in the training cohort (C), testing cohort (D) and entire TCGA cohort (E).

likely to occur in patients in the low-risk group, and that the
efficacy of immunotherapy was greatly reduced. Therefore,
we also analyzed the expression levels of immune check-
point genes, including Programmed death-ligand 1 (PD-L1),
Programmed cell death protein 1 (PD-1) and CTL-associated
antigen 4 (CTLA4). Analysis showed that the expression levels
of immune checkpoint genes were up-regulated in all of the
low-mVMscore groups (Fig. 7E). These findings suggested
that immunotherapy efficacy was weaker in the low-risk pop-
ulation, and that the benefit of immunotherapy may be greater
in the high-mVMscore group. Collectively, our results suggest
that the mVMscore has great potential for assessing the tumor

microenvironment, immune function, and immunotherapy in
patients with CC.

4. Discussion

Despite significant advances in CC screening and vaccination
over recent years, recurrence and metastasis remain important
factors that affect the survival of patients [33]. Previous studies
have demonstrated that m6A methylation modification pro-
motes both tumorigenesis andmetastasis [34, 35]; furthermore,
VM is now considered as a strong causative factor for tumor
recurrence as well as shorter patient survival times [36, 37].
A few studies have reported the association between m6A
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FIGURE 5. Analysis of mVMscore correlation with clinical traits and somatic mutations. (A) Kaplan-Meier curves of
the mVMscore in the entire TCGA dataset. (B) Time-dependent ROC curve of the mVMscore prognostic signature for 1-, 3-
and 5-year overall survival (OS) of CC patients in the entire TCGA dataset. (C) ROC curve analysis of the mVMscore and
clinicopathological parameters (grade, age, T stage, N stage and M stage) for 5-year OS. (D) The alluvial diagram depicted the
changes of clusters, mVMscore and survival status. (E) Comparison of mVMscore among different clusters. (F) Comparison of
mVMscore between different survival states. (G) Kaplan-Meier curves for high-TMB vs. low-TMB groups. (H) Kaplan-Meier
survival analysis for patients with different expression levels of mVMscore & TMB.
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FIGURE 6. Comparison of somatic mutations among different subgroups. (A) The mutation alteration in high-risk group.
(B) The mutation alteration in low-risk group. (C) Correlation of mutated genes in high mVMscore groups. (D) Correlation of
mutated genes in low mVMscore groups.

regulators and VM [38, 39]. However, the role of both m6A
methylation and VM in CC has not been reported.

VM has attracted significant attention since it was first
discovered. The presence of VM has been reported in a
variety of malignant tumors and is strongly associated with
a poor patient prognosis. Furthermore, VM is considered
to be a characteristic manifestation of highly aggressive and
metastatic tumor cells. A previous meta-analysis indicated that
VM exerts significant effect on clinicopathological features
[40], such as tumor histological differentiation, metastasis
and clinical staging, thus suggesting that VM-positive patients
have poorer survival outcomes. m6A methylation modifi-
cation is one of the most commonly investigated forms of
RNA modification. Evidence suggests that VM formation
is regulated by m6A methylation modification. Liu et al.

[41] reported that Insulin-like growth factor-binding protein
2 (IGFBP2) enhanced the expression of Vascular endothelial
cadherin (CD144) and Matrix Metalloproteinase 2 (MMP2)
through the Focal Adhesion Kinase (FAK)/ERK/Specificity
protein-1 (SP1) signaling pathway, which then plays a role
in the positive regulation of VM formation in gliomas. In
another study, Qiao et al. [42] found that METTL3 enhances
the translation efficiency of Yes-associated protein isoform 1
(YAP1) mRNA, which mediates the occurrence of VM in hep-
atocellular carcinoma. In addition, the demethylase ALKBH5
has also been shown to be involved in the progression of VM
in gliomas; in addition, tissues with high expression levels
of ALKBH5 had a higher rate of VM positivity [43]. These
recent reports confirm the feasibility of our current findings.
In our study, the combination of Pearson’s correlation analysis
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FIGURE 7. Potential for predicting immunotherapeutic response in mVM signature. (A) Differences in infiltration of
immune cell types between the two subgroups. (B) The infiltrating levels of different immune cell types. (C) ESTIMATE was
performed to compare immune scores, stromal scores, tumor purity and estimate scores in two groups. (D) TIDE prediction
difference in the high- and low-risk patients. (E) Violin plot depicted the expression of checkpoint genes in the high- and low-
mVMscore groups. *p < 0.05, **p < 0.01, ***p < 0.001.

and PPI network construction revealed the close interaction
between m6A regulators and VM-related genes. This finding
provides further possibilities for therapeutic options in CC.

This represents the first study to investigate the association
between m6A modification and VM; our aim was to improve
the accuracy and specificity of prognostic modeling by
combining two prognostic biomarkers. Furthermore, the
expression patterns of mVM genes were identified by

consensus clustering; this resulted in the classification of CC
patients into three subtypes. Prognostic analyses revealed
significant differences between the three subtypes; cluster C1
had the worst prognosis. Eight prognostic genes (VIRMA,
ZC3H13, Tissue factor pathway inhibitor (TFPI), TFPI2,
Laminin gamma2 (LAMC2), Prostaglandin-endoperoxide
synthase 2 (PTGS2), Lysyl oxidase-like 2 (LOXL2) and Serpin
peptidase inhibitor-clade F-member 1 (SERPINF1)) were
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then identified based on univariate Cox regression analysis
and LASSO regression analysis. Of these, ZC3H13 has been
shown to regulate Centromere protein K (CENPK) mRNA
stability to promote the stemness and chemoresistance of CC
[44]. A retrospective trial found that patients with high levels
of VIRMA protein expression had shorter overall survival
[45]. TFPI2, as an oncogene, is involved in the regulation of
apoptosis in CC [46]. Migration of squamous cell carcinoma
cells, including cervical cancer, is diminished when LAMC2
transcription is inhibited. LOXL2 enhances the ability of CC
cells to proliferate, invade and migrate, and inhibits apoptosis
by inducing Epithelial-mesenchymal-transition (EMT) both in
vivo and in vitro [47]. PTGS2, also known as Cyclooxygenase
2 (COX2), is abnormally elevated during inflammation,
and Human papilloma viruses (HPV) may induce cervical
carcinogenesis through the PTGS2 inflammatory pathway
[48]. However, the biological function of SERPINF1 has been
rarely reported in CC. And we found that only low expression
of SERPINF1 gene was significantly associated with short
overall survival of patients in the survival analysis of eight
prognostic genes, so further experimental studies are now
needed to investigate the function of SERPINF1.
The tumor microenvironment has been the focus of signifi-

cant research due to its complex role in promoting the invasion,
metastasis and distant dissemination of CC. The incalculable
translational potential of the tumor microenvironment holds
significant promise for immunotherapeutic diversity in CC
[49]. In the present study, we investigated the proportion of
tumor immune cell infiltration between high/low risk groups
by performing CIBERSORT and ssGSEA analysis. Analysis
revealed a high degree of immune cell infiltration in the high-
risk group, including activated B cells, activated CD8 T cells,
eosinophils, immature dendritic cells, myeloid-derived sup-
pressor cells (MDSCs), macrophages, neutrophils, regulatory
T (Treg) cells, follicular helper T (Tfh) cells, type 1 helper T
(Th1) cells, activated B cells, CD8 T cells, eosinophils and NK
cells. Notably, MDSCs and Treg cells were enriched in the
high-risk group, whichmay be one of the reasons for the poorer
prognosis of patients in the high-risk group [50, 51]. The
infiltrations of activated B cells, CD8 T cells and eosinophils
were shown to be associated with a better prognosis in CC,
which is in contrast to our results [52, 53]. Interestingly, in
colorectal cancer the expression level of anti-tumor immune
cells was elevated in the high-risk group, including CD8+ T
cells and B cells, which is the same as our findings [54]. The
bias that causes this result may be due to the presence of tumor
heterogeneity. In addition, we found that the low-risk group
was associated with high immunity scores and upregulated
expression levels of immune checkpoint genes (PD-L1, PD-
1, CTLA4). Furthermore, the TIDE score was higher in the
low-risk group, thus indicating that the low-risk group was
more prone to immunosuppression. Therefore, identifying and
targeting different molecular subgroups of CC offers hope for
the development of efficient therapeutic strategies.
However, there are some limitations to this study that need

to be considered. First, we only used data from the TCGA
database for internal validation; this may have influenced the
generalization and stability of our new model. Second, the
genes identified herein also need to be validated in clinical

studies to improve the accuracy of clinical prediction. Finally,
our analysis was limited by the normal tissue sample size of
the TCGA database, the statistical results may be biased; more
datasets are required for in-depth validation.

5. Conclusions

In this study, we constructed a risk signature, based on m6A
regulators and VM-related genes, that demonstrated good clin-
ical prediction ability and immunotherapy value. This model
has significant potential for guiding immunotherapy in patients
with CC.
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